首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Cassette mutagenesis has been used to study the role of a helix-turn-helix (HTH) motif in the novel RNA polymerase sigma factor sigma 54 of Klebsiella pneumoniae. Of the four residues which are predicted to be solvent-exposed in the second helix, the first (Glu-378) tolerated all substitutions, and some mutations of this residue increased expression from sigma 54-dependent promoters. Certain substitutions in the third exposed residue (Ser-382) produced a promoter-specific phenotype and all substitutions in the fourth residue (Arg-383) inactivated the protein, identifying this residue as being likely to be involved in base-specific interactions with the promoter. In vivo footprinting indicated that the inactive HTH mutants of sigma 54 were defective in interaction with both the -24 and -12 regions of the glnAp2 promoter.  相似文献   

12.
13.
14.
15.
16.
17.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening.  相似文献   

18.
The available evidence suggests that during the process of formation of a functional or "open" complex at a promoter, Escherichia coli RNA polymerase transiently realigns the two contacted regions of the promoter, thus stressing the intervening spacer DNA. We tested the possibility that this process plays an active role in the formation of an open complex. Two series of promoters were examined: one with spacer DNAs of 15 to 19 base-pairs and a derivative for which the promoters additionally contained a one-base gap in the spacer, so as to relieve any stress imposed on the DNA. Consistent with an active role for the stressed DNA in driving open complex formation, we have found that for promoters with a 17-base-pair spacer, the presence of a gap leads to a delay in the formation of an open complex, at a step subsequent to the initial binding of RNA polymerase to the promoter. The results with the other gapped promoters rule out direct binding of RNA polymerase to the region of the gap and indicate an increased flexibility in the gapped DNA. As not all observations with the spacer length series of gapped and ungapped promoters can be interpreted in terms of an active role of the spacer DNA without additional assumptions, such a role must still be considered tentative.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号