首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The karyotype and genomic in situ hybridization (GISH) of an intergeneric hybrid Baemoochae, ×Brassicoraphanus, which originated from hybridization between Chinese cabbage, Brassica campestris (synonym, rapa) ssp. pekinensis, and radish, Raphanus sativus, were analyzed to determine its chromosome complement. In the karyotype analysis, B. campestris was verified to have 2n = 20 chromosomes, including a particular pair of the subtelomeric chromosomes with the nucleolar organizer; R. sativus to have 2n = 18 chromosomes, including a particular pair of the submetacentric chromosomes with the secondary constriction of nucleolar organizer; and ×Brassicoraphanus to have 2n = 38 chromosomes, including both the subtelomeric chromosomes of Brassica and the secondary constriction chromosome pair of Raphanus. These findings indicate that ×Brassicoraphanus is a polyploid between Brassica and Raphanus. In the GISH analysis using chromosomes of B. campestris and R. sativus as the probe and blocking DNA, respectively, only 20 chromosomes of Brassica had hybridization signals. This result reveals that ×Brassicoraphanus is an intergeneric hybrid consisting of the complete genomes of both Brassica and Raphanus. However, the nucleolar organizers of Brassica and Raphanus were not identified because the hybridization signals appeared to be centering mainly around the centromere, becoming weak at the edges.  相似文献   

2.
Summary The various 20-chromosome cross-compatible taxa of Brassica belonging to the A genome can be put, purely on a morphological basis, into three groups — oleiferous, rapiferous and leafy. B. tournefortii, another 20-chromosome species of Brassica, was crossed with a taxon of each of the above groups with the object of finding its genetic divergence on the basis of meiotic synapsis in the hybrids. All the hybrids were sterile. More bivalents (4 II) were noticed in the hybrid involving the oleiferous taxon than in the rapiferous or leafy ones (2 II). It is inferred, on the basis of genetic equivalence of hybrids dependent upon the pairing relationship in meiotic metaphase, that B. tournefortii is of later origin and has been evolved from the oleiferous group. A new genome, D, has been assigned to B. tournefortii to distinguish it from the other A genome taxa of Brassica because of the low cross-compatibility, hybrid sterility and very little gene flow between the hybrids.  相似文献   

3.
We introduce and review Brassica crop improvement via trigenomic bridges. Six economically important Brassica species share three major genomes (A, B, and C), which are arranged in diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) species in the classical triangle of U. Trigenomic bridges are Brassica interspecific hybrid plants that contain the three genomes in various combinations, either triploid (ABC), unbalanced tetraploid (e.g., AABC), pentaploid (e.g., AABCC) or hexaploid (AABBCC). Through trigenomic bridges, Brassica breeders can access all the genetic resources in the triangle of U for genetic improvement of existing species and development of new agricultural species. Each of the three Brassica genomes occurs in several species, where they are distinguished as subgenomes with a tag to identify the species of origin. For example, the A subgenome in B. juncea (2n = AABB) is denoted as Aj and the A subgenome in B. napus (2n = AACC) as An. Trigenomic bridges have been used to increase genetic diversity in allopolyploid Brassica crop species, such as a new-type B. napus with subgenomes from B. rapa (Ar) and B. carinata (Cc). Recently, trigenomic bridges from several sources have been crossed together as the ‘founders’ of a potentially new allohexaploid Brassica species (AABBCC). During meiosis in a trigenomic bridge, crossovers are expected to form between homologous chromosomes of related subgenomes (for example Ar and An), but cross-overs may also occur between non-homologous chromosomes (for example between A and C genome chromosomes). Irregular meiosis is a common feature of new polyploids, and any new allotetraploid or allohexaploid Brassica genotypes derived from a trigenomic bridge must achieve meiotic stability through a process of diploidisation. New sequencing technologies, at the genomic and epigenomic level, may reveal the genetic and molecular basis of diploidization, and accelerate selection of stable allotetraploids or allohexaploids. Armed with new genetic resources from trigenomic bridges, Brassica breeders will be able to improve yield and broaden adaptation of Brassica crops to meet human demands for food and biofuel, particularly in the face of abiotic constraints caused by climate change.  相似文献   

4.
In the present investigation, the interspecific somatic hybridization between tuber mustard and red cabbage was established in order to introduce valuable genes from red cabbage (Brassica oleracea) into Brassica juncea. Prior to fusion treatment, protoplasts of red cabbage were inactivated with 2 mM iodoacetamide to inhibit cell division. Micro-calluses were obtained at a frequency of 10.3% after approximately 5 weeks culture following protoplast fusion. Some of the fusion-derived calluses possessed red pigmented cells after being transferred to proliferation medium, and they were presumably considered to be somatic hybrid cell lines. Plantlets were regenerated from 12 cell lines, of which nine plantlets exhibited characteristics intermediate of both parents in terms of plant morphology. With the exception of common protein bands featured by two parents, there were unique banding patterns produced in the hybrids by using SDS-PAGE analysis. By chromosome countings, it was showed that they ranged approximately from 2n=30 to 42 in chromosome numbers. Their hybridity were further confirmed by RAPD analysis revealing that genes of both parents were partially incorporated into the hybrids. Positively, all these hybrids were capable of seed-setting. The pod-setting was 4.2 in somatic hybrid H7 when backcrossed with tuber mustard.  相似文献   

5.
We present a new set of 12 highly polymorphic simple sequence repeat primer sequences for use with Brassica species. These new primers, and four from A.K.S. SzewcMcFadden and colleagues, were tested in four Brassica species (B. rapa, B. napus, B. oleracea and B. nigra). Most primers successfully amplified products within all species and were polymorphic. Due to the risk of gene flow from GM oilseed rape to its wild relatives, hybrid formation in the Brassicaceae is of great interest. We identify six primer pairs as specific to the A, B or C genomes that could be used to identify such hybrids.  相似文献   

6.
Summary An assay is described whereby Eco RI restriction fragment length polymorphisms of mitochondrial and chloroplast DNAs can definitively identify cytoplasms of interest in Brassica crop development. Restrictable mitochondrial and chloroplast DNA is extracted from as little as 2–3 g and 0.5 g leaf tissue, respectively, and the donor plants are able to continue to develop in a normal manner. An unknown cytoplasm can be identified in three days, which is a considerable saving in time and labor compared to the several years required by traditional methods. The assay is very inexpensive and should be established as a routine procedure in laboratories involved in sexual or somatic Brassica hybrid production.  相似文献   

7.
Summary Intergeneric hybrids between Moricandia arvensis (C3–C4 intermediate species) and Brassica A and B genome species (B. campestris and B. nigra) were produced via ovary culture. When M. arvensis was used as a female parent, the hybrid embryo yield (0.25–0.45 embryo per pollination) was similar between two genomes, regardless of the male parent. The reciprocal hybrid using B. campestris as a female was also obtained, although yield of embryo was lower (0.02 embryo per pollination). On the other hand, no hybrids were obtained without the in vitro technique. As most hybrid embryos could not develop normal shoots, plants were regenerated by inducing shoots on the cultured hypocotyl. The hybrid nature of the regenerated plant was confirmed morphologically and cytogenetically. A certain amount of bivalents (2.52-2.71) in the hybrids indicated the existence of partial chromosome homology between two genera. The present results indicate that ovary culture is an effective technique for overcoming the crossing barrier between M. arvensis and Brassica cultivated species.  相似文献   

8.
Summary Cell suspension-derived protoplasts of a chlorsulfuron-resistant (GH50) strain of Arabidopsis thaliana cv Columbia were X-irradiated at 60 or 90 krad, to facilitate the elimination of GH50 donor chromosomes in fusion products. Irradiated GH50 protoplasts were fused, with polyethylene glycol, to protoplasts derived from stem epidermal strips of Brassica napus cv Westar. Chlorsulfuron-resistant colonies were selected in vitro and then transferred to shoot and root regeneration medium. Seventeen hybrid lines were regenerated in vitro, and eight were successfully established in the greenhouse, where they flowered. These eight asymmetric hybrids were intermediate in vegetative morphology between Arabidopsis and Brassica. The flowers from these hybrids were male-sterile with abnormal petal and pistil structures. Zymograms for phosphoglucomutase, esterase, and peroxidase showed the presence of all parental isozymes in each of the hybrids tested. Nuclear hybridity was also confirmed for the ribosomal RNA genes using a wheat rDNA probe; however, the chloroplast genome in each of the hybrids was derived solely from the Brassica parent. All selected somatic hybrids were capable of rooting at levels of chlorsulfuron which were inhibitory to unfused Brassica plantlets. The degree of herbicide resistance in the hybrid shoots is presently being evaluated.Contribution No. 1428, Plant Research Centre, Agriculture Canada  相似文献   

9.
Summary Brassica campestris-alboglabra monosomic addition lines were developed from a trigenomic Brassica hybrid (2 n=3 x=29, AAC) obtained by backcrossing a resynthesized B. napus (2 n=4 x=38, AACC) line to its parental B. campestris (2 n=2 x=20, AA) line. One addition line was characterized genetically with three loci specific for the alien chromosome and cytologically by meiotic analysis. The following results were obtained. (1) The same chromosome in the B. alboglabra (2 n= 2 x=18, CC) genome carried the three loci, E c, W c and Lap-1 C c, which control the biosynthesis of erucic acid, white flower colour and the faster migrating band of leucine aminopeptidase, respectively. The linear order and possible positions of the three loci were inferred. The meiotic behaviour of the alien chromosome was documented and its transmission frequency was assessed. (2) Intergenomic recombination frequently occurred in the monosomic addition line, resulting in the introgression of one or two loci from the alien chromosome into the B. campestris genome. (3) B. campestris trisomics were found in the progeny of the monosomic addition line. (4) The removal of the other eight C-genome chromosomes from the trigenomic Brassica hybrid led to a dramatic increase in the erucic acid content of the monosomic addition line. (5) No offspring of the trigenomic Brassica hybrid showed evidence of intergenomic recombination and introgression of the W c locus into the B. campestris genome. It is questioned whether such a difference might be due to a possible regulating mechanism for homoeologous chromosome pairing.  相似文献   

10.
In crucifers, the ability of the stigma to differentially modulate hydration of pollen grains, depending on whether the pollen is recognized to be compatible or incompatible, represents a crucial stage in pollination. Our recent analysis of the mod mutation of Brassica, which results in a breakdown of the self-incompatibility response, led to the isolation of a gene linked to the MOD locus which is expressed at low levels in mod mutants. The gene is predicted to encode a plasma membrane-localized aquaporin-like protein and has been designated MIP-MOD. We utilized reporter gene analysis to demonstrate that the MIP-MOD promoter is active in Brassica papillar cells as well as in some vegetative tissues. The encoded protein is also likely to be plasma membrane-localized based on the observation that all plasma membrane-intrinsic aquaporin-like proteins in Brassica leaves are enriched in plasma membrane fractions. The MIP-MOD protein results in a low but measurable enhancement in osmotic water permeability of Xenopus oocytes and hence represents a functional aquaporin. The results are consistent with the notion that MIP-MOD is involved in the regulation of water transport across the stigma epidermal cell membrane.  相似文献   

11.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

12.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

13.
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein‐coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high‐throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent‐biased expression. These lncRNAs were found to implement regulatory functions directly in the long‐chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.  相似文献   

14.
The family Brassicaceae is well known for its large variation in chromosome numbers, common occurrence of polyploids and many reports of interspecific gene flow. The present review summarizes studies from the past decades on polyploidization and hybridization events, recognizing them as important evolutionary forces in the family. Attention is drawn to the issue of the reconstruction of reticulated pattern of evolution resulting from allopolyploid and homoploid hybrid speciation. The research of various authors on several Brassicaceae genera is presented and discussed in the context of our current understanding of polyploid and hybrid evolution. Model species, Arabidopsis thaliana and Brassica taxa, are referred to only marginally, major focus is on a comprehensive survey of studies on about a dozen best explored non-model genera (e.g. Cardamine, Draba, Rorippa, Thlaspi). The increasing amount of genetic and genomic resources available for Brassicaceae model species provides excellent opportunities for comparative genetic and genomic studies. Future research directions and challenges are thus outlined, in order to obtain more detailed insights into the evolution of polyploid and hybrid genomes.  相似文献   

15.
Summary Broccoli (Brassica oleracea L. italica) hypocotyl protoplasts were fused with mesophyll protoplasts of two B. napus lines, one carrying the Ogura (ogu) cms cytoplasm, and the other carrying a hybrid cytoplasm consisting of ogu mitochondria combined with triazine-tolerance-conferring chloroplasts from ctr cytoplasm. Two male-sterile somatic hybrids were recovered from the fusion of broccoli protoplasts with those of ogu/ctr cybrid B. napus. The ogu mtDNAs and ctr cpDNAs were not altered in these hybrids. Four male-sterile plants were recovered from the somatic hybridization of broccoli with ogu cms B. napus. Three of these possessed mitochondrial genomes that appeared to have resulted from recombination between the ogu and normal B. oleracea (ole) mtDNAs, while the fourth possessed an unrearranged ogu mtDNA. All four of these plants had B. oleracea cpDNA, and none displayed the seedling chlorosis associated with ogu chloroplasts. Most of the plants recovered from these fusions had the chromosome number expected of B. oleracea + B. napus hybrids (2n = 56). The novel cytoplasms may prove to be useful for the molecular analysis of Brassica cms and for the production of hybrid Brassica.  相似文献   

16.
Turnip mosaic virus (TuMV) is one of the most devastating threats to oilseed rape by causing serious crop losses. A total of 86 leaf samples of oilseed rape from eight different locations in Shaanxi, China, were tested by RT‐PCR for TuMV; the results revealed an infection level of 43% by TuMV. The complete coat protein (CP) gene of 32 TuMV isolates was cloned and sequenced. Analysis of the CP gene with sequences from the database allowed the genetic classification of 170 TuMV isolates or sequences. Four genetic clusters were obtained: MB (mostly Brassica isolates), MR (mostly Radish isolates), IBR (mostly Intermediate between Brassica and Radish clusters) and OBR (mostly outside Brassica and Radish clusters). All subgroups were slightly related to the hosts, but unrelated to geographical origins. Most of Shaanxi TuMV isolates were on separate branches, compared with the 138 known isolates originating from other parts of the world. Our results help provide a better understanding of the genetic diversity of TuMV isolates infecting oilseed rape in Shaanxi, China.  相似文献   

17.
Summary The feasibility of creating a restriction fragment length polymorphism (RFLP) linkage map in Brassica species was assessed by screening EcoRI-, HindIII-, or EcoRV-digested total genomic DNA from several accessions of B. campestris, B. oleracea, and B. napus using random genomic DNA clones from three Brassica libraries as hybridization probes. Differences in restriction fragment hybridization patterns occurred at frequencies of 95% for comparisons of accessions among species, 79% for comparisons of accessions among subspecies within species, and 70% for comparisons among accessions within subspecies. In addition, species differences in the level of hybridization were noted for some clones. The high degree of polymorphism found even among closely related Brassica accessions indicates that RFLP analysis will be a very useful tool in genetic, taxonomic, and evolutionary studies of the Brassica genus. Development of RFLP linkage maps is now in progress.  相似文献   

18.
TheSLR1 gene inBrassica is related both in DNA sequence and in pattern of expression to theS-locus glycoprotein (SLG) gene involved in the self-incompatibility mechanism which recognises and arrests the germination of self pollen. However,SLR1 shows minimal allelic variation and is expressed in both self-incompatible and compatibleBrassica lines and in related, self-compatible cruciferous plants. The function of the SLR1 protein is unknown. TheSLR1 gene was specifically ablated in self-incompatible and self-compatibleBrassica plants byAgrobacterium-mediated transformation with an antisense construct. Primary transformants and homozygous T2 progeny of both self-incompatibleB. oleracea and self-compatibleB. napus recipients were found to exhibit normal pollination responses despite having no detectable SLR1 glycoprotein. This shows that the high, wild-type level of SLR1 protein is not required to sustain the self-incompatibility reaction, nor is it necessary for successful intra-specific cross-pollination between compatible lines.  相似文献   

19.
Yao X  Ge X  Li Z 《Plant cell reports》2012,31(4):781-788
The wild species Brassica maurorum Durieu (MM, 2n = 16) is useful for the improvement of Brassica crops. Herein, interspecific reciprocal crosses between B. maurorum and three cultivated Brassica allotetraploids were carried out with the aid of embryo rescue. Trigenomic hybrids with Brassica napus (AACC, 2n = 38) and Brassica carinata (BBCC, 2n = 34) were produced from reciprocal crosses, but the hybrids with Brassica juncea (AABB, 2n = 36) were obtained only when B. maurorum was used as female. All the hybrids were morphologically intermediate between their parents, and were male and female sterile. By in vitro chromosome doubling of the trigenomic hybrids, the allohexaploids (AACC.MM/MM.AACC, 2n = 54; BBCC.MM, 2n = 50; MM.AABB, 2n = 52) were established and characterized for their phenotype and cytology. The fertilities of three allohexaploids were different, for AACC.MM and MM.AACC failed to produce seeds by selfing, but BBCC.MM showed low seed-set and MM.AABB had good seed-set. They also expressed variable extents of male meiotic regularity as to chromosome pairing and segregation, with MM.AABB > BBCC.MM > AACC.MM/MM.AACC, the same order as their fertility. So their meiotic behavior contributed to the fertility. Finally, the potential of these allohexaploids as a bridge for genetic improvement of Brassica crops was discussed.  相似文献   

20.
The tri-genomic hybrid (ABC, 2n=27) between Brassica carinata (BBCC, 2n=34) and B. rapa (AA, 2n=20) is a unique material for studying genome relationships among Brassica species and a valuable bridge for transferring desirable characteristics from one species to the other within the genus Brassica. The crossability between B. carinata and B. rapa was varied with the cultivar of B. rapa. Hybrid pollen mother cells (PMCs), confirmed by morphological observation and molecular marker assay, could be grouped into 20 classes on the basis of chromosome pairing configurations. More than 30% of the PMCs had nine or more bivalents. Genomic in situ hybridization confirmed that two of the bivalents most likely belonged to the B genome. Nearly one-half of the PMCs had trivalents (0–2) and quadrivalents (0–2), which revealed partial homology among the A, B, and C genomes and suggested that there is a good possibility to transfer genes by means of recombination among the three genomes. The advantages of using the tri-genomic hybrids as bridge material for breeding new types of B. napus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号