首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunization of transgenic mouse models of Alzheimer disease using amyloid-beta peptide (Abeta) reduces both the Alzheimer disease-like neuropathology and the spatial memory impairments of these mice. However, a therapeutic trial of immunization with Abeta42 in humans was discontinued because a few patients developed significant meningo-encephalitic cellular inflammatory reactions. Here we show that beneficial effects in mice arise from antibodies selectively directed against residues 4-10 of Abeta42, and that these antibodies inhibit both Abeta fibrillogenesis and cytotoxicity without eliciting an inflammatory response. These findings provide the basis for improved immunization antigens as well as attempts to design small-molecule mimics as alternative therapies.  相似文献   

2.
One of the most clinically advanced forms of experimental disease-modifying treatment for Alzheimer disease is immunization against the amyloid beta protein (Abeta), but how this may prevent cognitive impairment is unclear. We hypothesized that antibodies to Abeta could exert a beneficial action by directly neutralizing potentially synaptotoxic soluble Abeta species in the brain. Intracerebroventricular injection of naturally secreted human Abeta inhibited long-term potentiation (LTP), a correlate of learning and memory, in rat hippocampus in vivo but a monoclonal antibody to Abeta completely prevented the inhibition of LTP when injected after Abeta. Size fractionation showed that Abeta oligomers, not monomers or fibrils, were responsible for inhibiting LTP, and an Abeta antibody again prevented such inhibition. Active immunization against Abeta was partially effective, and the effects correlated positively with levels of antibodies to Abeta oligomers. The ability of exogenous and endogenous antibodies to rapidly neutralize soluble Abeta oligomers that disrupt synaptic plasticity in vivo suggests that treatment with such antibodies might show reversible cognitive deficits in early Alzheimer disease.  相似文献   

3.
Passive immunization of murine models of Alzheimer disease amyloidosis reduces amyloid-beta peptide (Abeta) levels and improves cognitive function. To specifically address the role of Abeta oligomers in learning and memory, we generated a novel monoclonal antibody, NAB61, that preferentially recognizes a conformational epitope present in dimeric, small oligomeric, and higher order Abeta structures but not full-length amyloid-beta precursor protein or C-terminal amyloid-beta precursor protein fragments. NAB61 also recognized a subset of brain Abeta deposits, preferentially mature senile plaques, and amyloid angiopathy. Using NAB61 as immunotherapy, we showed that aged Tg2576 transgenic mice treated with NAB61 displayed significant improvements in spatial learning and memory relative to control mice. These data implicated Abeta oligomers as a pathologic substrate for cognitive decline in Alzheimer disease.  相似文献   

4.
Alzheimer disease is a neurological disorder that is characterized by the presence of fibrils and oligomers composed of the amyloid beta (Abeta) peptide. In models of Alzheimer disease, overexpression of molecular chaperones, specifically heat shock protein 70 (Hsp70), suppresses phenotypes related to Abeta aggregation. These observations led to the hypothesis that chaperones might interact with Abeta and block self-association. However, although biochemical evidence to support this model has been collected in other neurodegenerative systems, the interaction between chaperones and Abeta has not been similarly explored. Here, we examine the effects of Hsp70/40 and Hsp90 on Abeta aggregation in vitro. We found that recombinant Hsp70/40 and Hsp90 block Abeta self-assembly and that these chaperones are effective at substoichiometric concentrations (approximately 1:50). The anti-aggregation activity of Hsp70 can be inhibited by a nonhydrolyzable nucleotide analog and encouraged by pharmacological stimulation of its ATPase activity. Finally, we were interested in discerning what type of amyloid structures can be acted upon by these chaperones. To address this question, we added Hsp70/40 and Hsp90 to pre-formed oligomers and fibrils. Based on thioflavin T reactivity, the combination of Hsp70/40 and Hsp90 caused structural changes in oligomers but had little effect on fibrils. These results suggest that if these chaperones are present in the same cellular compartment in which Abeta is produced, Hsp70/40 and Hsp90 may suppress the early stages of self-assembly. Thus, these results are consistent with a model in which pharmacological activation of chaperones might have a favorable therapeutic effect on Alzheimer disease.  相似文献   

5.
Accumulation of amyloid-beta (Abeta) is one of the earliest molecular events in Alzheimer disease (AD), whereas tau pathology is thought to be a later downstream event. It is now well established that Abeta exists as monomers, oligomers, and fibrils. To study the temporal profile of Abeta oligomer formation in vivo and to determine their interaction with tau pathology, we used the 3xTg-AD mice, which develop a progressive accumulation of plaques and tangles and cognitive impairments. We show that SDS-resistant Abeta oligomers accumulate in an age-dependent fashion, and we present evidence to show that oligomerization of Abeta appears to first occur intraneuronally. Finally, we show that a single intrahippocampal injection of a specific oligomeric antibody is sufficient to clear Abeta pathology, and more importantly, tau pathology. Therefore, Abeta oligomers may play a role in the induction of tau pathology, making the interference of Abeta oligomerization a valid therapeutic target.  相似文献   

6.
Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.  相似文献   

7.
Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.  相似文献   

8.
A subtle but chronic alteration in metabolic balance between amyloid-beta peptide (Abeta) anabolic and catabolic activities is thought to cause Abeta accumulation, leading to a decade-long pathological cascade of Alzheimer disease. However, it is still unclear whether a reduction of the catabolic activity of Abeta in the brain causes neuronal dysfunction in vivo. In the present study, to clarify a possible connection between a reduction in neprilysin activity and impairment of synaptic and cognitive functions, we cross-bred amyloid precursor protein (APP) transgenic mice (APP23) with neprilysin-deficient mice and biochemically and immunoelectron-microscopically analyzed Abeta accumulation in the brain. We also examined hippocampal synaptic plasticity using an in vivo recording technique and cognitive function using a battery of learning and memory behavior tests, including Y-maze, novel-object recognition, Morris water maze, and contextual fear conditioning tests at the age of 13-16 weeks. We present direct experimental evidence that reduced activity of neprilysin, the major Abeta-degrading enzyme, in the brain elevates oligomeric forms of Abeta at the synapses and leads to impaired hippocampal synaptic plasticity and cognitive function before the appearance of amyloid plaque load. Thus, reduced neprilysin activity appears to be a causative event that is at least partly responsible for the memory-associated symptoms of Alzheimer disease. This supports the idea that a strategy to reduce Abeta oligomers in the brain by up-regulating neprilysin activity would contribute to alleviation of these symptoms.  相似文献   

9.
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.  相似文献   

10.
Microglia are the principal immune cells of the brain. In Alzheimer disease, these brain mononuclear phagocytes are recruited from the blood and accumulate in senile plaques. However, the role of microglia in Alzheimer disease has not been resolved. Microglia may be neuroprotective by phagocytosing amyloid-beta (Abeta), but their activation and the secretion of neurotoxins may also cause neurodegeneration. Ccr2 is a chemokine receptor expressed on microglia, which mediates the accumulation of mononuclear phagocytes at sites of inflammation. Here we show that Ccr2 deficiency accelerates early disease progression and markedly impairs microglial accumulation in a transgenic mouse model of Alzheimer disease (Tg2576). Alzheimer disease mice deficient in Ccr2 accumulated Abeta earlier and died prematurely, in a manner that correlated with Ccr2 gene dosage, indicating that absence of early microglial accumulation leads to decreased Abeta clearance and increased mortality. Thus, Ccr2-dependent microglial accumulation plays a protective role in the early stages of Alzheimer disease by promoting Abeta clearance.  相似文献   

11.
Expression of somatostatin in the brain declines during aging in various mammals including apes and humans. A prominent decrease in this neuropeptide also represents a pathological characteristic of Alzheimer disease. Using in vitro and in vivo paradigms, we show that somatostatin regulates the metabolism of amyloid beta peptide (Abeta), the primary pathogenic agent of Alzheimer disease, in the brain through modulating proteolytic degradation catalyzed by neprilysin. Among various effector candidates, only somatostatin upregulated neprilysin activity in primary cortical neurons. A genetic deficiency of somatostatin altered hippocampal neprilysin activity and localization, and increased the quantity of a hydrophobic 42-mer form of Abeta, Abeta(42), in a manner similar to presenilin gene mutations that cause familial Alzheimer disease. These results indicate that the aging-induced downregulation of somatostatin expression may be a trigger for Abeta accumulation leading to late-onset sporadic Alzheimer disease, and suggest that somatostatin receptors may be pharmacological-target candidates for prevention and treatment of Alzheimer disease.  相似文献   

12.
beta-Amyloid protein (Abeta) is the major component of senile plaques found in the brains of Alzheimer's patients. A novel ELISA has been developed which probes the early stages of oligomerization of Abeta. Incubation of Abeta solutions at 37 degrees C and pH 7.4 produces soluble oligomers in a concentration-dependent manner. Fresh Abeta42 solutions rapidly form soluble oligomers, whereas Abeta40 solutions require prolonged incubation to produce oligomers. Fresh Abeta42 solutions are more toxic to human neuroblastoma SH-SY5Y cells than Abeta40 solutions, possibly mediated by soluble oligomers. The differences between Abeta42 and Abeta40 could explain the association of the longer form with familial early-onset Alzheimer's disease. We also report a new strategy for solid-phase synthesis of Abeta peptides which gives high yield and purity of the initial crude preparation.  相似文献   

13.
Alzheimer disease (AD) is a progressive, neurodegenerative disorder that leads to debilitating cognitive deficits. Although little is known about the early functional or ultrastructural changes associated with AD, it has been proposed that a stage of synaptic dysfunction might precede neurodegeneration in the development of this disease. Unfortunately, the molecular mechanisms that underlie such synaptic dysfunction remain largely unknown. Recently we have shown that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that plays a critical role in synaptic vesicle recycling, and hence, in the signaling properties of the synapse. We report here that this dynamin 1 degradation was the result of calpain activation induced by the sustained calcium influx mediated by N-methyl-D-aspartate receptors in hippocampal neurons. In addition, our results showed that soluble oligomeric Abeta, and not fibrillar Abeta, was responsible for this sustained calcium influx, calpain activation, and dynamin 1 degradation. Considering the importance of dynamin 1 to synaptic function, these data suggest that Abeta soluble oligomers might catalyze a stage of synaptic dysfunction that precedes synapse loss and neurodegeneration. These data also highlight the calpain system as a novel therapeutic target for early stage AD intervention.  相似文献   

14.
Defects in dendritic spines and synapses contribute to cognitive deficits in mental retardation syndromes and, potentially, Alzheimer disease. p21-activated kinases (PAKs) regulate actin filaments and morphogenesis of dendritic spines regulated by the Rho family GTPases Rac and Cdc42. We previously reported that active PAK was markedly reduced in Alzheimer disease cytosol, accompanied by downstream loss of the spine actin-regulatory protein Drebrin. beta-Amyloid (Abeta) oligomer was implicated in PAK defects. Here we demonstrate that PAK is aberrantly activated and translocated from cytosol to membrane in Alzheimer disease brain and in 22-month-old Tg2576 transgenic mice with Alzheimer disease. This active PAK coimmunoprecipitated with the small GTPase Rac and both translocated to granules. Abeta42 oligomer treatment of cultured hippocampal neurons induced similar effects, accompanied by reduction of dendrites that were protected by kinase-active but not kinase-dead PAK. Abeta42 oligomer treatment also significantly reduced N-methyl-d-aspartic acid receptor subunit NR2B phosphotyrosine labeling. The Src family tyrosine kinase inhibitor PP2 significantly blocked the PAK/Rac translocation but not the loss of p-NR2B in Abeta42 oligomer-treated neurons. Src family kinases are known to phosphorylate the Rac activator Tiam1, which has recently been shown to be Abeta-responsive. In addition, anti-oligomer curcumin comparatively suppressed PAK translocation in aged Tg2576 transgenic mice with Alzheimer amyloid pathology and in Abeta42 oligomer-treated cultured hippocampal neurons. Our results implicate aberrant PAK in Abeta oligomer-induced signaling and synaptic deficits in Alzheimer disease.  相似文献   

15.
Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.  相似文献   

16.
Oligomers of Abeta peptide have been indicated recently as a possible main causative agent of Alzheimer's disease. However, information concerning their structural properties is very limited. Here Abeta oligomers are studied by non-covalent complexes mass spectrometry and disulfide rearrangement. As a model molecule, an Abeta fragment spanning residues 10-30 (Abeta10-30) has been used. This model peptide is known to contain the core region responsible for Abeta aggregation to fibrils. Non-covalent complexes mass spectrometry indicates that, at neutral pH, monomers are accompanied by oligomers up to hexamers of gradually decreasing population. H-2H exchange studies and direct monomer exchange rate measurements with the use of 15N labeled peptides and mass spectrometry show a fast exchange of monomeric units between oligomers. Disulfide exchange studies of cysteine tagged Abeta10-30 and its mutant show proximity of N-N and C-C termini of monomers in oligomers. The presented data underscore a dynamic character for pre-nucleation forms of Abeta, however, with a marked tendency for parallel strand orientation in oligomers.  相似文献   

17.
The amyloid beta peptide (Abeta), composed of 40 or 42 amino acids, is a critical component in the etiology of the neurodegenerative Alzheimer disease. Abeta is prone to aggregate and forms amyloid fibrils progressively both in vitro and in vivo. To understand the process of amyloidogenesis, it is pivotal to examine the initial stages of the folding process. We examined the equilibrium folding properties, assembly states, and stabilities of the early folding stages of Abeta40 and Abeta42 prior to fibril formation. We found that Abeta40 and Abeta42 have different conformations and assembly states upon refolding from their unfolded ensembles. Abeta40 is predominantly an unstable and collapsed monomeric species, whereas Abeta42 populates a stable structured trimeric or tetrameric species at concentrations above approximately 12.5 microm. Thermodynamic analysis showed that the free energies of Abeta40 monomer and Abeta42 trimer/tetramer are approximately 1.1 and approximately 15/ approximately 22 kcal/mol, respectively. The early aggregation stages of Abeta40 and Abeta42 contain different solvent-exposed hydrophobic surfaces that are located at the sequences flanking its protease-resistant segment. The amyloidogenic folded structure of Abeta is important for the formation of spherical beta oligomeric species. However, beta oligomers are not an obligatory intermediate in the process of fibril formation because oligomerization is inhibited at concentrations of urea that have no effect on fibril formation. The distinct initial folding properties of Abeta40 and Abeta42 may play an important role in the higher aggregation potential and pathological significance of Abeta42.  相似文献   

18.
Expression of the human beta-amyloid peptide (Abeta) in a transgenic Caenorhabditis elegans Alzheimer disease model leads to the induction of HSP-16 proteins, a family of small heat shock-inducible proteins homologous to vertebrate alphaB crystallin. These proteins also co-localize and co-immunoprecipitate with Abeta in this model (Fonte, V., Kapulkin, V., Taft, A., Fluet, A., Friedman, D., and Link, C. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 9439-9444). To investigate the molecular basis and biological function of this interaction between HSP-16 and Abeta, we generated transgenic C. elegans animals with high level, constitutive expression of HSP-16.2. We find that constitutive expression of wild type, but not mutant, HSP-16.2 partially suppresses Abeta toxicity. Wild type Abeta-(1-42), but not Abeta single chain dimer, was observed to become sequestered in HSP-16.2-containing inclusions, indicating a conformation-dependent interaction between HSP-16.2 and Abeta in vivo. Constitutive expression of HSP-16.2 could reduce amyloid fibril formation, but it did not reduce the overall accumulation of Abeta peptide or alter the pattern of the predominant oligomeric species. Studies with recombinant HSP-16.2 demonstrated that HSP-16.2 can bind directly to Abeta in vitro, with a preferential affinity for oligomeric Abeta species. This interaction between Abeta and HSP-16.2 also influences the formation of Abeta oligomers in in vitro assays. These studies are consistent with a model in which small chaperone proteins reduce Abeta toxicity by interacting directly with the Abeta peptide and altering its oligomerization pathways, thereby reducing the formation of a minor toxic species.  相似文献   

19.
Decelerated degradation of beta-amyloid (Abeta) and its interaction with synaptic copper may be pathogenic in Alzheimer disease. Recently, Co(III)-cyclen tagged to an aromatic recognition motif was shown to degrade Abeta in vitro. Here, we report that apocyclen attached to selective Abeta recognition motifs (KLVFF or curcumin) can capture copper bound to Abeta and use the Cu(II) in place of Co(III) to become proteolytically active. The resultant complexes interfere with Abeta aggregation, degrade Abeta into fragments, preventing H2O2 formation and toxicity in neuronal cell culture. Because Abeta binds Cu in amyloid plaques, apocyclen-tagged targeting molecules may be a promising approach to the selective degradation of Abeta in Alzheimer disease. The principle of copper capture could generalize to other amyloidoses where copper is implicated.  相似文献   

20.
Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer''s disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer''s disease patients'' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号