首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse   总被引:5,自引:0,他引:5  
Increased oxidative damage is a prominent and early feature in Alzheimer disease (AD). However, whether it is a primary cause or merely a downstream consequence in AD pathology is still unknown. We previously generated alpha-tocopherol transfer protein knockout (Ttpa-/-) mice, in which lipid peroxidation in the brain was significantly increased by complete depletion of alpha-tocopherol (alpha-Toc). Here we crossed AD transgenic (APPsw) model mice (Tg2576) with Ttpa-/- mice. The resulting double-mutant (Ttpa-/- APPsw) mice showed earlier and more severe cognitive dysfunction in the Morris water maze, novel-object recognition, and contextual fear conditioning tests. They also showed increased amyloid beta-peptide (Abeta) deposits in the brain by immunohistochemical analysis, which was ameliorated with alpha-Toc supplementation. In this report we provide clear evidence indicating that chronic lipid peroxidation due to alpha-Toc depletion enhances AD phenotype in a mouse model.  相似文献   

2.
Apolipoprotein E (apoE) genotype has a major influence on the risk for Alzheimer disease (AD). Different apoE isoforms may alter AD pathogenesis via their interactions with the amyloid beta-peptide (Abeta). Mice lacking the lipid transporter ABCA1 were found to have markedly decreased levels and lipidation of apoE in the central nervous system. We hypothesized that if Abca1-/- mice were bred to the PDAPP mouse model of AD, PDAPP Abca1-/ mice would have a phenotype similar to that of PDAPP Apoe+/- and PDAPP Apoe-/- mice, which develop less amyloid deposition than PDAPP Apoe+/+ mice. In contrast to this prediction, 12-month-old PDAPP Abca -/- mice had significantly higher levels of hippocampal Abeta, and cerebral amyloid angiopathy was significantly more common compared with PDAPP Abca1+/+ mice. Amyloid precursor protein (APP) C-terminal fragments were not different between Abca1 genotypes prior to plaque deposition in 3-month-old PDAPP mice, suggesting that deletion of Abca1 did not affect APP processing or Abeta production. As expected, 3-month-old PDAPP Abca1-/- mice had decreased apoE levels, but they also had a higher percentage of carbonate-insoluble apoE, suggesting that poorly lipidated apoE is less soluble in vivo. We also found that 12-month-old PDAPP Abca1-/- mice had a higher percentage of carbonate-insoluble apoE and that apoE deposits co-localize with amyloid plaques, demonstrating that poorly lipidated apoE co-deposits with insoluble Abeta. Together, these data suggest that despite substantially lower apoE levels, poorly lipidated apoE produced in the absence of ABCA1 is strongly amyloidogenic in vivo.  相似文献   

3.
Beta-amyloid (Abeta) is a major pathological determinant of Alzheimer's disease (AD). Both active and passive immunization studies have shown that antibodies against Abeta are effective in decreasing cerebral Abeta levels, reducing Abeta accumulation, and attenuating cognitive deficits in animal models of AD. However, the therapeutic potential of these antibodies in human AD patients is limited because of adverse inflammatory reactions and cerebral hemorrhaging associated with the treatments. Here we show that single chain variable fragments (scFv's) represent an attractive alternative to more conventional antibody-based therapeutics to reduce Abeta toxicity. The binding affinities and binding epitopes of two different scFv's to Abeta were characterized using a surface plasmon resonance (SPR) biosensor. An scFv binding the 17-28 region of Abeta effectively inhibited in vitro aggregation of Abeta as determined by thioflavin T (ThT) fluorescence staining and atomic force microscopy (AFM) analysis, while an scFv binding the carboxyl-terminal region of Abeta (residues 29-40) did not inhibit aggregation. The scFv to the 17-28 region when co-incubated with Abeta not only decreased aggregation but also eliminated any toxic effects of aggregated Abeta on the human neuroblastoma cell line, SH-SY5Y. The ability of scFv's to inhibit both aggregation and cytotoxicity of Abeta indicates that scFv's have potential therapeutic value for treating AD.  相似文献   

4.
The amyloid beta peptide (Abeta), composed of 40 or 42 amino acids, is a critical component in the etiology of the neurodegenerative Alzheimer disease. Abeta is prone to aggregate and forms amyloid fibrils progressively both in vitro and in vivo. To understand the process of amyloidogenesis, it is pivotal to examine the initial stages of the folding process. We examined the equilibrium folding properties, assembly states, and stabilities of the early folding stages of Abeta40 and Abeta42 prior to fibril formation. We found that Abeta40 and Abeta42 have different conformations and assembly states upon refolding from their unfolded ensembles. Abeta40 is predominantly an unstable and collapsed monomeric species, whereas Abeta42 populates a stable structured trimeric or tetrameric species at concentrations above approximately 12.5 microm. Thermodynamic analysis showed that the free energies of Abeta40 monomer and Abeta42 trimer/tetramer are approximately 1.1 and approximately 15/ approximately 22 kcal/mol, respectively. The early aggregation stages of Abeta40 and Abeta42 contain different solvent-exposed hydrophobic surfaces that are located at the sequences flanking its protease-resistant segment. The amyloidogenic folded structure of Abeta is important for the formation of spherical beta oligomeric species. However, beta oligomers are not an obligatory intermediate in the process of fibril formation because oligomerization is inhibited at concentrations of urea that have no effect on fibril formation. The distinct initial folding properties of Abeta40 and Abeta42 may play an important role in the higher aggregation potential and pathological significance of Abeta42.  相似文献   

5.
Time-resolved anisotropy measurements (TRAMS) have been used to study the aggregation of the beta-amyloid (Abeta) peptide which is suspected of playing a central role in the pathogenesis of Alzheimer's Disease (AD). The experiments, which employ small quantities of fluorescently-labelled Abeta, in addition to the untagged peptide, have shown that the sensitive TRAMS technique detects the presence of preformed "seed" particles in freshly prepared solutions of Abeta. More importantly, as 100 microM solutions of Abeta containing tagged Abeta at a concentration level of either 0.5 or 1 microM are incubated, the TRAMS prove capable of detection of the peptide aggregation process through the appearance of a continuously increasing "residual anisotropy" within the time-resolved fluorescence data. The method detects Abeta aggregation in its earliest stages, well before complexation becomes apparent in more conventional methods such as the thioflavin T fluorescence assay. The TRAMS approach promises to provide a most attractive route for establishment of a high-throughput procedure for the early detection of the presence of amyloid aggregates in the screening of biological samples.  相似文献   

6.
7.
Youm JW  Kim H  Han JH  Jang CH  Ha HJ  Mook-Jung I  Jeon JH  Choi CY  Kim YH  Kim HS  Joung H 《FEBS letters》2005,579(30):6737-6744
Beta amyloid (Abeta) is believed one of the major pathogens of Alzheimer's disease (AD), and the reduction of Abeta is considered a primary therapeutic target. Immunization with Abeta can reduce Abeta burden and pathological features in transgenic AD model mice. Transgenic potato plants were made using genes encoding 5 tandem repeats of Abeta1-42 peptides with an ER retention signal. Amyloid precursor protein transgenic mice (Tg2576) fed with transgenic potato tubers with adjuvant showed a primary immune response and a partial reduction of Abeta burden in the brain. Thus, Abeta tandem repeats can be expressed in transgenic potato plants to form immunologically functional Abeta, and these potatoes has a potential to be used for the prevention and treatment of AD.  相似文献   

8.
The deposition of beta-amyloid peptide (Abeta) fibrils around neurons is an invariable feature of Alzheimer's disease and there is increasing evidence that fibrillar deposits and/or prefibrillar intermediates play a central role in the observed neurodegeneration. One site of Abeta generation is the endosomes, and we have investigated the kinetics of Abeta association at endosomal pH over physiologically relevant time frames. We have identified three distinct Abeta association phases that occur at rates comparable to endosomal transit times. Rapid formation of burst phase aggregates, larger than 200nm, was observed within 15 seconds. Two slower association phases were detected by fluorescence resonance energy transfer and termed phase 1 and phase 2 aggregation reactions. At 20 microM Abeta, pH 6, the half lives of the phase 1 and phase 2 aggregation phases were 3.15 minutes and 17.66 minutes, respectively. Atomic force microscopy and dynamic light scattering studies indicate that the burst phase aggregate is large and amorphous, while phase 1 and 2 aggregates are spherical with hydrodynamic radii around 30 nm. There is an apparent equilibrium, potentially mediated through a soluble Abeta intermediate, between the large burst phase aggregates and phase 1 and 2 spherical particles. The large burst phase aggregates form quickly, however, they disappear as the equilibrium shifts toward the spherical aggregates. These aggregated species do not contain alpha-helical or beta-structure as determined by circular dichroism spectroscopy. However, after two weeks beta-structure is observed and is attributable to the insoluble portion of the sample. After two months, mature amyloid fibrils appear and the spherical aggregates are significantly diminished.  相似文献   

9.
Phenylazo benzenesulfonamides were designed and synthesized as beta-amyloid (Abeta40) fibril assembly inhibitors, and evaluated for inhibition of Abeta40 aggregation and neurotoxicity using rat cortical neurons. Compound 2 (LB-152) was the most potent compound in this study, and the para-NMe(2) group on the end of the phenylazo moiety may play an important role in preventing Abeta40 fibril formation. LB-152 provides a new lead for further development of potential beta-amyloid aggregation inhibitors to treat AD.  相似文献   

10.
Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. Mutations in the 27-kDa small heat-shock protein gene (HSPB1) cause axonal CMT or distal hereditary motor neuropathy (distal HMN). We developed and characterized transgenic mice expressing two different HSPB1 mutations (S135F and P182L) in neurons only. These mice showed all features of CMT or distal HMN dependent on the mutation. Expression of mutant HSPB1 decreased acetylated α-tubulin abundance and induced severe axonal transport deficits. An increase of α-tubulin acetylation induced by pharmacological inhibition of histone deacetylase 6 (HDAC6) corrected the axonal transport defects caused by HSPB1 mutations and rescued the CMT phenotype of symptomatic mutant HSPB1 mice. Our findings demonstrate the pathogenic role of α-tubulin deacetylation in mutant HSPB1-induced neuropathies and offer perspectives for using HDAC6 inhibitors as a therapeutic strategy for hereditary axonopathies.  相似文献   

11.
The time dependency of the spontaneous aggregation of the fibrillogenic -Amyloid peptide, A1–40, was measured by turbidity, circular dichroism, HPLC, and fluorescence polarization. The results by all methods were comparable and they were most consistent with a kinetic model where the peptide first slowly forms an activated monomeric derivative (AM), which is the only species able to initiate, by tetramerization, the formation of linear aggregates. The anti-A antibody 6E10, raised against residues 1–17, at concentrations of 200–300 nM delayed significantly the aggregation of 50 M amyloid peptide. The anti–A antibody 4G8, raised against residues 17–24, was much less active in that respect, while the antibody A162, raised against the C-terminal residues 39–43 of the full-length A was totally inactive at those concentrations. Concomitant with the aggregation experiments, we also measured the time dependency of the A1–40–induced toxicity toward SH-EP1 cells and hippocampal neurons, evaluated by SYTOX Green fluorescence, lactate dehydrogenase release, and activation of caspases. The extent of cell damage measured by all methods reached a maximum at the same time and this maximum coincided with that of the concentration of AM. According to the kinetic scheme, the latter is the only transient peptide species whose concentration passes through a maximum. Thus, it appears that the toxic species of A1–40 is most likely the same transient activated monomer that is responsible for the nucleation of fibril formation. These conclusions should provide a structural basis for understanding the toxicity of A1–40 in vitro and possibly in vivo.  相似文献   

12.
Aggregation of the Alzheimer's disease-related Aβ1-28 peptide was induced by a rapid, sub-millisecond pH jump and monitored by time-resolved infrared spectroscopy on the millisecond to second time-scale. The release of protons was induced by the photolysis of a caged compound, 1-(2-nitrophenyl)ethyl sulfate (NPE-sulfate). The pH jump generated in our experimental setup is used to model the Aβ peptide structural conversions that may occur in the acidic endosomal/lysosomal cell compartment system. The aggregation of the Aβ1-28 peptide induced by the pH jump from 8.5 to < 6 yields an antiparallel β-sheet structure. The kinetics of the structural transition is biphasic, showing an initial rapid phase with a transition from random coil to an oligomeric β-sheet form with a time constant of 3.6 s. This phase is followed by a second slower transition, which yields larger aggregates during 48.0 s.  相似文献   

13.
Insoluble Aβ1–42 is the main component of the amyloid plaque. We have previously demonstrated that exposure to low pH can confer the molten globule state on soluble Aβ1–42 in vitro [Biochem. J. 361 (2000) 547] and unfolding experiments with guadinine hydrochloride (GdnHCl) have now confirmed this observation. The molten globule state of the protein has many biological properties and understanding the mechanisms of its formation is an important step in devising a therapeutic strategy for Alzheimer's disease (AD). We therefore investigated the ability of a series of synthetic eight-residue peptides derived from Aβ1–42 to inhibit the acid-induced aggregation of Aβ1–42 and identified the potent peptides to be Aβ15–22, Aβ16–23 and Aβ17–24. A1-antichymotrypsin, a member of the serine proteinase inhibitor (serpin) family is another major component of the amyloid plaque. In the present study, we investigated the proteolytic activity of Aβ1–42 against casein at different pHs. Chemical modification of amino acid residues in Aβ1–42 indicated that serine and histidine residues, but not aspartic acid, are necessary for enzymatic activity, suggesting that it is a serine proteinase. Amino acid substitution studies indicate that glutamic acids at positions 11 and 22 participate indirectly in proteolysis and we surmise that amino acid residues 29–42 are required to stabilize the conformer. A study of metal ions suggested that Cu2+ affected the enzymatic activity, but Zn2+ and Fe2+ did not. Interestingly, Aβ14–21 and Aβ15–22 were the only peptides that inhibited the proteolytic activity of Aβ42. Therefore, Aβ15–22 may control both aggregation of Aβ1–42 at acidic pH and its proteolytic activity at neutral pH. Consequently, we suggest that it may be of use in the therapy of Alzheimer's disease.  相似文献   

14.
Alzheimer disease (AD) is a neurodegenerative disease which is characterized by the presence of extracellular senile plaques mainly composed of amyloid-beta peptide (Abeta), intracellular neurofibrillary tangles, and selective synaptic and neuronal loss. AD brains revealed elevated levels of oxidative stress markers which have been implicated in Abeta-induced toxicity. In the present work we addressed the hypothesis that oxidative stress occurs early in the development of AD and evaluated the extension of the oxidative stress and the levels of antioxidants in an in vivo model of AD, the triple-transgenic mouse, which develops plaques, tangles, and cognitive impairments and thus mimics AD progression in humans. We have shown that in this model, levels of antioxidants, namely, reduced glutathione and vitamin E, are decreased and the extent of lipid peroxidation is increased. We have also observed increased activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase. These alterations are evident during the Abeta oligomerization period, before the appearance of Abeta plaques and neurofibrillary tangles, supporting the view that oxidative stress occurs early in the development of the disease.  相似文献   

15.
scyllo-Inositol (SI) is an endogenous inositol stereoisomer known to inhibit aggregation and fibril formation of the amyloid-beta peptide (Aβ). Human clinical trials using SI to treat Alzheimer disease (AD) patients have shown potential benefits. In light of the growing therapeutic potential of SI, the objective of our study was to gain a more thorough understanding of the mechanism of action. In addition to Aβ plaques, a prominent pathological feature of AD is the extensive accumulation of autophagic vacuoles (AVs) suggesting dysfunction in this degradation pathway. Using the TgCRND8 mouse model for AD, we examined SI treatment effects on various components of the autophagic pathway. Autophagy impairment in TgCRND8 mice occurs in the latter stages of the pathway where AV-lysosome fusion and lysosomal degradation take place. SI treatment attenuated this impairment with a decrease in the size and the number of accumulated AVs. We propose that the beneficial effects of SI-Aβ interactions may resolve autophagic deficiencies in the AD brains.  相似文献   

16.
Accumulation of amyloid-beta (Abeta) is one of the earliest molecular events in Alzheimer disease (AD), whereas tau pathology is thought to be a later downstream event. It is now well established that Abeta exists as monomers, oligomers, and fibrils. To study the temporal profile of Abeta oligomer formation in vivo and to determine their interaction with tau pathology, we used the 3xTg-AD mice, which develop a progressive accumulation of plaques and tangles and cognitive impairments. We show that SDS-resistant Abeta oligomers accumulate in an age-dependent fashion, and we present evidence to show that oligomerization of Abeta appears to first occur intraneuronally. Finally, we show that a single intrahippocampal injection of a specific oligomeric antibody is sufficient to clear Abeta pathology, and more importantly, tau pathology. Therefore, Abeta oligomers may play a role in the induction of tau pathology, making the interference of Abeta oligomerization a valid therapeutic target.  相似文献   

17.
We have designed new non-peptidic potential inhibitors of gamma-secretase and examined their ability to prevent production of amyloid-beta 40 (Abeta40) and Abeta42 by human cells expressing wild-type and Swedish-mutant beta-amyloid precursor protein (betaAPP). Here we identify three such agents that markedly reduce recovery of both Abeta40 and Abeta42 produced by both cell lines, and increase that of C99 and C83, the carboxy-terminal fragments of betaAPP that are derived from beta-and alpha-secretase, respectively. Furthermore, we show that these inhibitors do not affect endoproteolysis of endogenous or overexpressed presenilins. These inhibitors are totally unable to affect the mDeltaEnotch-1 cleavage that leads to generation of the Notch intracellular domain (NICD). These represent the first non-peptidic inhibitors that are able to prevent gamma-secretase cleavage of betaAPP without affecting processing of mDeltaEnotch-1 or endoproteolysis of presenilins. The distinction between these two proteolytic events, which are both prevented by disruption of presenilin genes, indicates that although they are intimately linked with betaAPP and Notch maturation, presenilins are probably involved in the control of maturation processes upstream of enzymes that cleave gamma-secretase and Notch.  相似文献   

18.
Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.  相似文献   

19.
Transgenic mice carrying mutant Cu/Zn superoxide dismutase (SOD1) recapitulate the motor impairment of human amyotrophic lateral sclerosis (ALS). The amyloid-beta (Abeta) peptide associated with Alzheimer's disease is neurotoxic. To investigate the potential role of Abeta in ALS development, we generated a double transgenic mouse line that overexpresses SOD1(G93A) and amyloid precursor protein (APP)-C100. The transgenic mouse C100.SOD1(G93A) overexpresses Abeta and shows earlier onset of motor impairment but has the same lifespan as the single transgenic SOD1(G93A) mouse. To determine the mechanism associated with this early-onset phenotype, we measured copper and zinc levels in brain and spinal cord and found both significantly elevated in the single and double transgenic mice compared with their littermate control mice. Increased glial fibrillary acidic protein and decreased APP levels in the spinal cord of C100.SOD1(G93A) mice compared with the SOD1(G93A) mice agree with the neuronal damage observed by immunohistochemical analysis. In the spinal cords of C100.SOD1(G93A) double transgenic mice, soluble Abeta was elevated in mice at end-stage disease compared with the pre-symptomatic stage. Buffer-insoluble SOD1 aggregates were significantly elevated in the pre-symptomatic mice of C100.SOD1(G93A) compared with the age-matched SOD1(G93A) mice, correlating with the earlier onset of motor impairment in the C100.SOD1(G93A) mice. This study supports abnormal SOD1 protein aggregation as the pathogenic mechanism in ALS, and implicates a potential role for Abeta in the development of ALS by exacerbating SOD1(G93A) aggregation.  相似文献   

20.
Recent evidence suggests that apoptosis in post-mitotic neurons involves an aborted attempt of cells to re-enter the cell cycle which is characterized by increased expression of cyclins, such as cyclin D1, prior to death. However, such cyclins activation prior to apoptotic cell death remains controversial. Many neurological disorders are characterized by neuronal loss, particularly amyotrophic lateral sclerosis (ALS). ALS is a motoneuronal degenerative condition in which motoneuron loss could be due to an inappropriate return of these cells in the cell cycle. In the present study, we observed that deprivation of neurotrophic factor in purified motoneuron cultures induces an apoptotic pathway. After neurotrophic factor withdrawal, DAPI (4,6-diamidin-2-phenylindol dichlorohydrate) staining revealed the presence of nuclear condensation, DNA fragmentation, and perinuclear apoptotic body. Similarly, release of apoptotic microparticles and activation of caspases-3 and -9 were observed within the first hours following neurotrophic factor withdrawal. Next, we tested whether inhibition of cell cycle-related cyclin-dependent kinases (cdks) can prevent motoneuronal cell death. We showed that three cdk inhibitors, olomoucine, roscovitine and flavopiridol, suppress the death of motoneurons. Finally, we observed early increases in cyclin D1 and cyclin E expression after withdrawal of neurotrophic factors. These findings support the hypothesis that after removal of trophic support, post-mitotic neuronal cells die due to an attempt to re-enter the cell cycle in an uncoordinated and inappropriate manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号