首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
When single-celled protonemata of Adiantum capillus-veneris L. were centrifuged immediately before transferring to darkness from continuous irradiation with red light, their nuclei were displaced basipetally. Both filamentous and branched protonemata were obtained. The stronger the centrifugal acceleration, the more frequently the branched protonemata were induced.
The effect of centrifugation at 1,300 x g for 15 min on nuclear displacement was different at different stages of the cell cycle. In early G1 phase, the nucleus was easily displaced by centrifugation, but quickly returned to the original position after centrifugation. In late G1 phase, the nucleus was displaced, but after centrifugation it never came back to the original position. In late G2 and M phases, the nucleus was no longer displaced by the centrifugation. Premitotic positioning of the nucleus in cytokinesis took place about 5 hr before cell plate formation in all centrifugal treatments described above.  相似文献   

2.
The intracellular positions of the nucleus and of cortical, circumferentially aligned microtubules (CCAM) in filamentous, single-celled protonemata ofAdiantum capillus-veneris were determined throughout the cell cycle in the dark. When apical growth continued at G1 phase, the nucleus migrated keeping a constant distance from the tip. When the apical growth stopped at late S or G2 phase, the nucleus stopped moving forward and then slightly moved backward to the site of cytokinesis. The CCAM were found only in the dome of protonemal tip when growing under continuous red light; they increased in number after dark incubation for 12 hr and then decreased after 20th hr in the dark. The CCAM were usually observed in the region between the nucleus and the tip at 28 hr in the dark. They were located around the nuclear region at pre-prophase and prophase, but then totally disappeared at metaphase and thereafter.  相似文献   

3.
Summary Germinating spores of the sensitive fern,Onoclea sensibilis L., undergo premitotic nuclear migration before a highly asymmetric cell division partitions each spore into a large protonemal cell and a small rhizoid initial. Nuclear movement and subsequent rhizoid formation were inhibited by the microtubule (MT) inhibitors, colchicine, isopropyl-N-3-chlorophenyl carbamate (CIPC) and griseofulvin. Colchicine prevented polar nuclear movement and cell division so that spores developed into enlarged, uninucleate single cells. CIPC and griseofulvin prevented nuclear migration, but not cell division, so that spores divided into daughter cells of approximately equal size. In colchicine-treated spores, MT were not observed at any time during germination. CIPC prevented MT formation at a time coincident with nuclear movement in the control and caused a disorientation of the spindle MT. Both colchicine and CIPC appeared to act at a time prior to the onset of normal nuclear movement. The effects of colchicine were reversible but those of CIPC were not. Cytochalasin b had no effect upon nuclear movement or rhizoid differentiation. These results suggests that MT mediate nuclear movement and that a highly asymmetric cell division is essential for rhizoid differentiation.  相似文献   

4.
Movements of organelles in the nuclear region as the cell cycleprogresses in single-celled protonemata of Adiantum capillus-veneriswere examined by digital image processing techniques and microscopyof particle movement. Organelles in the nuclear region werenot very crowded and moving directionally along the longitudinalaxis of the filamentous cell in the G1 and S phases. They beganto gather and accumulate in the nuclear region in early G2 phase,after which directional movement changed to undirectional Brownianmotion-like movement in late G2 phase. Movement of organelleslocated on the lateral surface of the nucleus slowed after premitoticpositioning of nucleus and lasted until the nucleolus disappeared.Movement of organelles in the cytoplasm surrounding the nucleoplasmresumed just after the nucleolus disappeared, whereas organelleslocated in the outer regions of the apical and basal surfacesof the nucleus moved rapidly during prophase but did not moveduring metaphase, movement being resumed after chromosome separation.Thus, organelle movement in the nuclear region showed temporaland spatial change during the cell cycle. (Received August 24, 1983; Accepted December 28, 1983)  相似文献   

5.
6.
Dinoflagellates of the genus Symbiodinium live in symbiosis with many invertebrates, including reef‐building corals. Hosts maintain this symbiosis through continuous regulation of Symbiodinium cell density via expulsion and degradation (postmitotic) and/or constraining cell growth and division through manipulation of the symbiont cell cycle (premitotic). Importance of premitotic regulation is unknown since little data exists on cell cycles for the immense genetic diversity of Symbiodinium. We therefore examined cell cycle progression for several distinct SymbiodiniumITS2‐types (B1, C1, D1a). All types exhibited typical microalgal cell cycle progression, G1 phase through to S phase during the light period, and S phase to G2/M phase during the dark period. However, the proportion of cells in these phases differed between strains and reflected differences in growth rates. Undivided larger cells with 3n DNA content were observed especially in type D1a, which exhibited a distinct cell cycle pattern. We further compared cell cycle patterns under different growth light intensities and thermal regimes. Whilst light intensity did not affect cell cycle patterns, heat stress inhibited cell cycle progression and arrested all strains in G1 phase. We discuss the importance of understanding Symbiodinium functional diversity and how our findings apply to clarify stability of host‐Symbiodinium symbioses.  相似文献   

7.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

8.
Summary The polarity of a growing pollen tube is clearly reflected by a distinct zonation of the cytoplasmic content. The vegetative nucleus and the generative cell (GC) are located in the tip region of the tube, and the basal cytoplasmic portion is highly vacuolated. Using pollen tubes ofNicotiana sylvestris Spegazz. & Comes grown in vitro, we examined the effects of varying concentrations of the microtubule inhibitors colchicine and propham. The depolymerization of the cortical microtubules by 25 M colchicine led to a disorganization of the cytoplasm, i.e., vacuolization of the tip region, and to a deranged position of both the vegetative nucleus and the generative cell. The same concentration of colchicine inhibited tube growth by 10–20% of the control. Mitosis of the GC was not affected. Only from concentrations of 200 M the configuration of the GC's microtubules was altered and an inhibition of mitosis was observed. At this concentration the disorganization of the cytoplasm was always reversible, but neither inhibition of mitosis nor derangement of the nuclear positioning was. At 1,800 M colchicine, pollen tube growth was inhibited by 50% of the control. Using propham, the same three steps of action were observed, although propham proved to be about a hundred times more effective than colchicine. We conclude that the cortical microtubules of the pollen tube are involved in maintaining cellular polarity, probably as a part of a heterogeneous cytoskeletal network including also microfilaments and membranous elements. Nuclear positioning seems to be dependent on both, the tube's cortical and the GC's microtubules. A possible involvement of the extracellular matrix in maintaining intracytoplasmic polarity is suggested.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EGTA ethyleneglycol-bis-(aminoethyl ether) tetraacetic acid - GC generative cell - MF microfilament - MT microtubule - PEM-buffer 50 mM PIPES, 1 mM EGTA, 2 mM MgSO4, pH 6.9 - PBS phosphate buffered saline - PIPES piperazine-bis-ethanesulphonic acid - PTG-test pollen tube growth test - VN vegetative nucleus Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

9.
Root cultures of Gloriosa superba were treated with 5 mm methyl jasmonate and 125 μm AlCl3 which enhanced the intracellular colchicine content of the roots by 50-fold and 63-fold, respectively. Ten millimolar of CaCl2 and 1 mm CdCl2 enhanced biomass significantly (7- to 8.6-fold, respectively) while maximum release of colchicine into the medium was obtained with 10 mm CdCl2. Casein hydrolysate, yeast extract and silver nitrate had no significant effect on growth and colchicine accumulation in root cultures. Revisions requested 2 November 2005; Revisions received 9 January 2006  相似文献   

10.
Summary Microspectrophotometry following Feulgen staining and autoradiography following (3H)-thymidine labelling were used to study cell-cycle events during pollen development in tobacco (Nicotiana tabacum L.). During normal gametophytic pollen development in the anther and in vitro the generative nucleus passes through the S phase to the G2 phase soon after microspore mitosis, while the vegetative nucleus remains arrested in G1 (=G0). During embryogenie induction by an in vitro starvation treatment of immature pollen ongoing DNA replication in the generative nucleus is completed and followed by DNA replication in the vegetative cell in a large fraction of the pollen grains. Addition of the DNA replication inhibitor hydroxyurea to the starvation medium postpones S phase entry until the pollen is transferred to a rich medium and does not affect embryo formation. These results demonstrate that one of the crucial events of embryogenic induction is the derepression of the G1 arrest in the cell cycle of the vegetative cell.  相似文献   

11.
12.
Summary Mesophyll cell nuclei isolated from leaves of Pennisetum purpureum were analysed by flow cytometry to determine the nuclear DNA content and the percentage of cells in different phases of the cell cycle. Samples taken from base, middle and tip regions of leaves 2 to 8 (leaf 1, which was adjacent to the meristem, was too small to sample) showed no significant differences in the amount of DNA per G1 nucleus due to either age or position. The average amount of DNA per G1 nucleus was 5.78 pg. Although the majority of cells for each sample were in G1, samples taken from older leaves had higher percentages of cells in G2 and S phases. More specifically, base and middle regions of older leaves had a higher percentage of cells in G2 than all three positions in younger leaves. Electrophoretic analysis of nuclear DNA from leaves 2 to 7 showed no evidence of degradation or difference in fragment size for any sample or position. This study was compared to previous work on the relationship between leaf age and embryogenic competence in Pennisetum purpureum. The results suggest that changes in the cell cycle, and/or a loss or fragmentation of the nuclear DNA, are not responsible for loss of embryogenic competence in mature leaf tissue.  相似文献   

13.
In contrast to ferns, the spore nuclei of the moss, Funaria hygrometrica, are in the G2 phase. They do not incorporate the thymidine analogue BUdr before the first mitosis. When spores germinate in the presence of aphidicolin, an inhibitor of the (nuclear) DNA polymerase alpha, they give rise to two-celled, negatively phototropic protonemata, consisting of relatively long and thin cells. Determinations of nuclear DNA content further confirm the presence of G2-nuclei in Funaria spores. Spores of Pogonatum urnigerum and of Equisetum hyemale likewise contain G2-nuclei, as shown by BUdr incorporation or experiments with aphidicolin, respectively. In germinating Funaria spores, the organelle DNA is synthesized very early and independent of nuclear DNA. A gradient in replication of organelle DNA is found only in the long tip cells which are formed in the presence of aphidicolin.  相似文献   

14.
Cytogenetical studies were carried out on the successive generations of offsprings from the induced tetraploid hybrid (2n = 32) betweenRanunculus silerifolius (2n = 16) andR. chinensis (2n = 16). Aneuploids, 2n = 30 to 35, frequently occurred. In latter subsequent generations the deviation of aneuploids increased, but the proportion of euploids decreased, accompanied by the reduction of fertility of pollen grains and seed sets. F2 and F4 PMCs constantly exhibited meiotic abnormality, i.e. formation of quadrivalents and univalents. The speciation process ofR. cantoniensis (2n = 32), which was presumed to arise from tetraploid hybrids between the above two species, is discussed on the basis of the above evidences.Former contributions of this series areOkada & Tamura (1977) andOkada (1984).  相似文献   

15.
16.
G. Schmiedel  E. Schnepf 《Planta》1980,147(5):405-413
In the caulonema tip cells of Funaria hygrometrica, chloroplasts, mitochondria, and dictyosomes have differences in structure which are determined by cell polarity. In contrast to the slowly growing chloronema tip cells the apical cell of the caulonema contains a tip body. Colchicine stops tip growth; it causes the formation of subapical cell protrusions, redistribution of the plastids, and a loss of their polar differentiation. Cytochalasin B inhibits growth and affects the position of cell organelles. After treatment with ionophore A23 187, growth is slower and shorter and wider cells are formed. D2O causes a transient reversion of organelle distribution but premitotic nuclei are not dislocated. In some tip cells the reversion of polarity persists; they continue to grow with a new tip at their base. During centrifugation, colchicine has only a slight influence on the stability of organelle anchorage. The former polar organization of most cells is restored within a few hours after centrifugation, and the cells resume normal growth. In premitotic cells the nucleus and other organelles cannot be retransported, they often continue to grow with reversed polarity. Colchicine retards the redistribution of organelles generally and increases the number of cells that form a basal outgrowth. The interrelationship between the peripheral cytoplasm and the nucleus and the role of microtubules in maintaining and reestablishing cell polarity are discussed.Abbreviations DMSO dimethylsulfoxide - CB cytochalasin B Dedicated to Prof. Dr. A. Pirson on the occasion of his 70. birthday  相似文献   

17.
Cell cycle arrest in G1 in response to ionizing radiation or senescence is believed to be provoked by inactivation of G1 cyclin-cyclin-dependent kinases (Cdks) by the Cdk inhibitor p21Cip1/Waf1/Sdi1. We provide evidence that in addition to exerting negative control of the G1/S phase transition, p21 may play a role at the onset of mitosis. In nontransformed fibroblasts, p21 transiently reaccumulates in the nucleus near the G2/M-phase boundary, concomitant with cyclin B1 nuclear translocation, and associates with a fraction of cyclin A-Cdk and cyclin B1-Cdk complexes. Premitotic nuclear accumulation of cyclin B1 is not detectable in cells with low p21 levels, such as fibroblasts expressing the viral human papillomavirus type 16 E6 oncoprotein, which functionally inactivates p53, or in tumor-derived cells. Moreover, synchronized E6-expressing fibroblasts show accelerated entry into mitosis compared to wild-type cells and exhibit higher cyclin A- and cyclin B1-associated kinase activities. Finally, primary embryonic fibroblasts derived from p21−/− mice have significantly reduced numbers of premitotic cells with nuclear cyclin B1. These data suggest that p21 promotes a transient pause late in G2 that may contribute to the implementation of late cell cycle checkpoint controls.  相似文献   

18.
Summary A new technique of exploitation of the data was proposed after DNA scanning microdensitometry. By using all of the measurements obtained from the seriated sections of a single nucleus, this method made it possible to estimate six characteristic parameters during the different phases of the cell cycle in the various shoot apical cells. The cells whose rate of proliferation was the highest showed the biggest variations of their nuclear and nucleolar volumes during the cell cycle. In the axial zone, where the cells have a slow cell cycle and display the longest duration of the G1 phase, the volume occupied by dispersed DNA was greater than in the cells of the lateral zone and of the rib meristem, where the cell cycle and the G1 phase were short. No matter what the cell type, the proportion of the dispersed and condensed DNA varied little when the G1 and G2 phases were compared. In the Z phase, characterized by a decondensation of the DNA, the mean DNA amount was 3.4 C. The evolution of the nuclear density during the interphase was also estimated. It is demonstrated that the main feature of the shoot apex zonation was the decondensation of the condensed DNA in the axial zone in both the G1 and G2 phases.  相似文献   

19.
In 83 species of the familiesMonotropaceae, Apocynaceae, Oleaceae, Scrophulariaceae, Lentibulariaceae, Bignoniaceae, Martyniaceae, Myoporaceae, Verbenaceae, Lamiaceae, Campanulaceae, andLiliaceae, protein bodies in the cell nuclei have been found, in 68 of these species for the first time. On the basis of their structure in accordance with morphological characters the generaBurgsdorfia, Hesiodia, Olisia, andPhlomoides of theLamiaceae are accepted;Lamium is divided intoLamium, Lamiastrum andOrvala; two new combinations are established:Kickxia campyloceras (Rech. fil. &Esfandiari)Speta andEtornotus papilionaceus (Burm. in L.)Speta. Deviating shape or lack of protein bodies corroborate former taxonomic decisions, e.g. the transfer ofMonotropa toMonotropaceae or the separation ofGaleopsis andLadanum; Veronica schmidtiana should not be included inPseudolysimachion. Systematic affinities are discussed primarily withinScrophulariaceae because nuclear protein bodies have been studied already in many species of this family. ForCampanula patula two 2 x populations are reported.
Herrn Professor Dr. L.Geitler zum 80. Geburtstag gewidmet.  相似文献   

20.
Summary The rate of organelle movement during progression of the cell cycle in single-celled protonemata of the fernAdiantum capillus-veneris is determined microscopically with a time-lapse video system. Under red light organelle movement is very slow (1.8 m/min) in early G1 in the apical 100-m region. The rate of organelle movement becomes higher in proportion to distance from the nuclear region, reaching a plateau in the neighborhood of 300 m from the tip. Organelle movement during the progression of G1 and S phases in the dark does not show a significant difference from that in early G1 under red light. In M phase, however, organelle movement in the nuclear region slows down a few minutes after nucleolar disappearance and then stops until the beginning of cell plate formation. Organelle movement in the basal region of the protonema slows down, but does not stop, shortly after movement in the nuclear region has ceased. This indicates that a message is sent from the nuclear region to the basal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号