首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoadherence is an important step for the invasion of a mammalian host cell by Trypanosoma cruzi. Cell surface macromolecules are implicated in the T. cruzi-cardiomyocyte recognition process. Therefore, we investigated the role of cell surface proteoglycans during this invasion process and analyzed their expression after the parasite infected the target cells. Treatment of trypomastigote forms of T. cruzi with soluble heparan sulfate resulted in a significant inhibition in successful invasion, while chondroitin sulfate had no effect. Removal of sulfated glycoconjugates from the cardiomyocyte surface using glycosaminoglycan (GAG) lyases demonstrated the specific binding of the parasites to heparan sulfate proteoglycans. Infection levels were reduced by 42% whenthe host cells were previously treated with heparitinase II. No changes were detected in the expression of GAGs infected cardiomyocytes even after 96 h of infection. Our data demonstrate that heparan sulfate proteoglycans, but not chondroitin sulfate, mediate both attachment and invasion of cardiomyocytes by T. cruzi.  相似文献   

2.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

3.
Group B Streptococcus (GBS) colonizes mucosal surfaces of the human gastrointestinal and gynecological tracts and causes disease in a wide range of patients. Invasive illness occurs after organisms traverse an epithelial boundary and enter deeper tissues. Previously we have reported that the alpha C protein (ACP) on the surface of GBS mediates GBS entry into ME180 cervical epithelial cells and GBS translocation across layers of these cells. We now demonstrate that ACP interacts with host cell glycosaminoglycan (GAG); the interaction of ACP with ME180 cells is inhibited if cells are pretreated with sodium chlorate, an inhibitor of sulfate incorporation, or with heparitinases. The interaction is also inhibited in the presence of soluble heparin or heparan sulfate or host cell-derived GAG. In addition, ACP binds soluble heparin specifically in inhibition and dot blot assays. After interaction with host GAG, soluble ACP enters ME180 cells and fractionates to the eukaryotic cell cytosol. These events are inhibited in cells pretreated with cytochalasin D or with Clostridium difficile toxin B. These data indicate that full-length ACP interacts with ME180 cell GAG and enters the eukaryotic cell cytosol by a mechanism that involves Rho GTPase-dependent actin rearrangements. We suggest that these molecular interactions drive ACP-mediated translocation of GBS across epithelial barriers, thereby facilitating invasive GBS infection.  相似文献   

4.
Glypicans are major cell surface heparan sulfate proteoglycans, the structures of which are characterized by the presence of a cysteine-rich globular domain, a short glycosaminoglycan (GAG) attachment region, and a glycosylphosphatidylinositol membrane anchor. Despite strong evolutionary conservation of the globular domains of glypicans, no function has yet been attributed to them. By using a novel quantitative approach for assessing proteoglycan glycosylation, we show here that removal of the globular domain from rat glypican-1 converts the proteoglycan from one that bears approximately 90% heparan sulfate (HS) to one that bears approximately 90% chondroitin sulfate. Mutational analysis shows that sequences at least 70 amino acids away from the glypican-1 GAG attachment site are required for preferential HS assembly, although more nearby sequences also play a role. The effects of the glypican-1 globular domain on HS assembly could also be demonstrated by fusing this domain to sequences representing the GAG attachment sites of other proteoglycans or, surprisingly, simply by expressing the isolated globular domain in cells and analyzing effects either on an exogenously expressed glypican-1 GAG attachment domain or on endogenous proteoglycans. Quantitative analysis of the effect of the globular domain on GAG addition to proteoglycan core proteins suggested that preferential HS assembly is achieved, at least in part, through the inhibition of chondroitin sulfate assembly. These data identify the glypican-1 globular domain as a structural motif that potently influences GAG class determination and suggest that an important role of glypican globular domains is to ensure a high level of HS substitution of these proteoglycans.  相似文献   

5.
Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.  相似文献   

6.
One hypothesis for the mechanism of chlamydial interaction with its eukaryotic host cell invokes a trimolecular mechanism, whereby a Chlamydia -derived glycosaminoglycan bridges a chlamydial acceptor molecule and a host receptor enabling attachment and invasion. We show that a heparan sulphate-specific monoclonal antibody specifically binds a glycosaminoglycan localized to the surface of the chlamydial organism and effectively neutralizes infectivity of both C. trachomatis and C. pneumoniae . In addition to the ability of this antibody to neutralize infectivity, direct visualization using immunofluorescence demonstrated staining of chlamydial organisms localized to the intracellular vacuole. The chlamydial-associated glycosaminoglycan was specifically labelled with [14C]-glucosamine, and the labelled compound was immunoprecipitated and resolved by gel electrophoresis. The chlamydial-associated glycosaminoglycan is a high-molecular-weight compound similar in size to heparin or heparan sulphate and was sensitive to cleavage by heparan sulphate lyase. These data demonstrate that a glucosamine-containing sulphated polysaccharide is produced within the intracellular vacuole containing chlamydiae and is a target for antibody-mediated neutralization of infectivity.  相似文献   

7.
The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.  相似文献   

8.
Fibroblasts from cornea, heart, and skin of day 14 embryonic chicks demonstrate the ability to make heparan sulfate-like polysaccharide when examined during the 10 hr period immediately following their removal from the embryo. Both the whole tissues from which these fibroblasts are isolated and the fibroblasts grown for 2–5 weeks in vitro also synthesize heparan sulfate. During their first few days in vitro, the three fibroblast populations display increasing rates of [35S]-sulfate and d-[1-3H]-Glucosamine incorporation into glycosaminoglycans and sharp fluctuations of those rates, yet the percentage of total [35S]-sulfate incorporated into heparan sulfate-like polysaccharide and the distribution of this polysaccharide between cells and nutrient medium do not change significantly. During their first 48 hr in vitro, skin fibroblasts, but not those from cornea or heart, show steadily decreasing discrepancies between the proportions of [35S]-sulfate and d-[1-3H]-Glucosamine incorporated into heparan sulfate, suggesting a sharp decline in the synthesis of nonsulfated glycosaminoglycans. These data support the hypothesis of Kraemer than many cell-types in vivo may normally make heparan sulfate. The data largely eliminate the hypothesis that the biosynthesis of this polysaccharide is selectively stimulated as embryonic cells adapt to growth in vitro.  相似文献   

9.
Purified NMuMG mouse mammary epithelial cell surface proteoglycan (PG), a membrane-intercalated core protein bearing both heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains, binds to a thrombospondin (TSP) affinity column and is eluted by a salt gradient. Double immunofluorescence microscopy demonstrates extensive co-localization of bound exogenous TSP and cells bearing exposed cell surface PG at their apical surface. The binding, as assayed by both methods, is heparitinase-sensitive, but not chondroitinase-sensitive. Alkali-released heparan sulfate chains bind to a TSP affinity column, similarly to native PG, whereas the chrondroitin sulfate chains do not. Core protein does not bind to TSP. These results indicate that NMuMG cells bind TSP via their surface PG and that the binding is mediated by the heparan sulfate chains.  相似文献   

10.
Mouse 3T3 cells and their Simian Virus 40-transformed derivatives (3T3SV) were used to assess the relationship of transfromation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan (GAG). Glucosamine- and galactosamine- containing GAG were labeled equivalently by [3H=A1-glucose regardless of culture type, allowing incorporation into the various GAG to be compared under all conditions studied. Three components of each culture type were examined: the cells, which contain the bulk of newly synthesized GAG and are enriched in chondroitin sulfate and heparan sulfate; cell surface materials released by trypsin, which contain predominantly hyaluronic acid; and the media , which contain predominantly hyaluronic acid and undersulfated chondroitin sulfate. Increased cell density and viral transformation reduce incorporation into GAG relative to the incorporation into other polysaccharides. Transformation, however, does not substantially alter the type or distribution of newly synthesized GAG; the relative amounts and cellular distributions were very similar in 3T3 and 3T3SV cultures growing at similar rates at low densities. On the other hand, increased cell density as well as density-dependent growth inhibition modified the type and distribution of newly synthesized GAG. At high cell densities both cell types showed reduced incorporation into hyaluronate and an increase in cellular GAG due to enhanced labeling of chondroitin sulfate and heparan sulfate. These changes were more marked in confluent 3T3 cultures which also differed in showing substantially more GAG label in the medium and in chondroitin-6-sulfate and heparan sulfate at the cell surface. Since cell density and possibly density- dependent inhibition of growth but not viral transformation are major factors controlling the cellular distribution and type of newly synthesized GAG, differences due to GAG's in the culture behavior of normal and transformed cells may occur only at high cell density. The density-induced GAG alterations most likely involved are increased condroitin-6-sulfate and heparan sulfate and decreased hyaluronic acid at the cell surface.  相似文献   

11.
The mechanism by which Chlamydia trachomatis is endocytosed by host cells is unclear. Studies of the kinetics of chlamydial attachment and uptake in the susceptible HeLa 229 cell line showed that chlamydial endocytosis was rapid and saturable but limited by the slow rate of chlamydial attachment. To overcome this limitation and to investigate the mechanism of endocytosis, chlamydiae were centrifuged onto the host cell surface in the cold to promote attachment. Endocytosis of the adherent chlamydiae was initiated synchronously by rapid warming to 36 degrees C. Electron micrographs of chlamydial uptake 5 min after onset showed that chlamydial ingestion involves movement of the host cell membrane, leading to interiorization in tight, endocytic vacuoles which were not clathrin coated. Chlamydial ingestion was not inhibited by monodansylcadaverine or amantadine, inhibitors of receptor-mediated endocytosis and chlamydiae failed to displace [3H]sucrose from micropinocytic vesicles. Chlamydial endocytosis was markedly inhibited by cytochalasin D, an inhibitor of host cell microfilament function, and by vincristine or vinblastine, inhibitors of host cell microtubules. Hyperimmune rabbit antibody prevented the ingestion of adherent chlamydiae, suggesting that endocytosis requires the circumferential binding of chlamydial and host cell surface ligands. These findings were incompatible with the suggestion that chlamydiae enter cells by taking advantage of the classic mechanism of receptor-mediated endocytosis into clathrin-coated vesicles, used by the host cell for the internalization of beta-lipoprotein and other macromolecules, but were consistent with the hypothesis that chlamydiae enter cells by a microfilament-dependent zipper mechanism.  相似文献   

12.
Cell surface glycosaminoglycans (GAGs) play an important role in the attachment and invasion process of a variety of intracellular pathogens. We have previously demonstrated that heparan sulfate proteoglycans (HSPG) mediate the invasion of trypomastigote forms of Trypanosoma cruzi in cardiomyocytes. Herein, we analysed whether GAGs are also implicated in amastigote invasion. Competition assays with soluble GAGs revealed that treatment of T. cruzi amastigotes with heparin and heparan sulfate leads to a reduction in the infection ratio, achieving 82% and 65% inhibition of invasion, respectively. Other sulfated GAGs, such as chondroitin sulfate, dermatan sulfate and keratan sulfate, had no effect on the invasion process. In addition, a significant decrease in infection occurred after interaction of amastigotes with GAG-deficient Chinese Hamster Ovary (CHO) cells, decreasing from 20% and 28% in wild-type CHO cells to 5% and 9% in the mutant cells after 2 h and 4 h of infection, respectively. These findings suggest that amastigote invasion also involves host cell surface heparan sulfate proteoglycans. The knowledge of the mechanism triggered by heparan sulfate-binding T. cruzi proteins may provide new potential candidates for Chagas disease therapy.  相似文献   

13.
The human parvovirus adeno-associated virus (AAV) infects a broad range of cell types, including human, nonhuman primate, canine, murine, and avian. Although little is known about the initial events of virus infection, AAV is currently being developed as a vector for human gene therapy. Using defined mutant CHO cell lines and standard biochemical assays, we demonstrate that heparan sulfate proteoglycans mediate both AAV attachment to and infection of target cells. Competition experiments using heparin, a soluble receptor analog, demonstrated dose-dependent inhibition of AAV attachment and infection. Enzymatic removal of heparan but not chondroitin sulfate moieties from the cell surface greatly reduced AAV attachment and infectivity. Finally, mutant cell lines that do not produce heparan sulfate proteoglycans were significantly impaired for both AAV binding and infection. This is the first report that proteoglycan has a role in cellular attachment of a parvovirus. Together, these results demonstrate that membrane-associated heparan sulfate proteoglycan serves as the viral receptor for AAV type 2, and provide an explanation for the broad host range of AAV. Identification of heparan sulfate proteoglycan as a viral receptor should facilitate development of new reagents for virus purification and provide critical information on the use of AAV as a gene therapy vector.  相似文献   

14.
Heparin is a glycosaminoglycan (GAG) that is extracted primarily from porcine intestinal tissues and is widely used as a clinical anticoagulant. It is biosynthesized as a proteoglycan and stored exclusively in mast cells and is partially degraded to peptidoglycan and GAG on immunologically activated mast cell degranulation. In contrast, the structurally related heparan sulfate, is the polysaccharide portion of a ubiquitous proteoglycan, localized on cell surface and in the extracellular matrix of all animal tissues. Heparin and heparan sulfate are made in the Golgi through a similar biosynthetic pathway. The current study was undertaken in a search for alternative, non-mammalian, sources of anticoagulant heparin. The heparin/heparan sulfate family of GAGs, prepared and purified from turkey intestine, were assayed for anticoagulant activity and structurally characterized. The resulting GAGs displayed a very low anticoagulant activity when compared to those obtained from porcine intestine using an identical procedure. Structural characterization studies clearly demonstrate that heparan sulfate is the major GAG in the turkey intestine. This observation is rationalized based on differences in the mammalian and avian coagulation and immune systems.  相似文献   

15.
We have shown that cell surface heparan sulfate serves as the initial receptor for both serotypes of herpes simplex virus (HSV). We found that virions could bind to heparin, a related glycosaminoglycan, and that heparin blocked virus adsorption. Agents known to bind to cell surface heparan sulfate blocked viral adsorption and infection. Enzymatic digestion of cell surface heparan sulfate but not of dermatan sulfate or chondroitin sulfate concomitantly reduced the binding of virus to the cells and rendered the cells resistant to infection. Although cell surface heparan sulfate was required for infection by HSV types 1 and 2, the two serotypes may bind to heparan sulfate with different affinities or may recognize different structural features of heparan sulfate. Consistent with their broad host ranges, the two HSV serotypes use as primary receptors ubiquitous cell surface components known to participate in interactions with the extracellular matrix and with other cell surfaces.  相似文献   

16.
The cellular receptor of foamy viruses (FVs) is unknown. The broad spectrum of permissive cells suggests that the cellular receptor is a molecular structure with almost ubiquitous prevalence. Here, we investigated the ability of heparan sulfate (HS), a glycosaminoglycan (GAG) present on the extracellular matrix of many cells, to bind FV particles and to permit prototype FV (PFV) and feline FV (FFV) entry. Permissivity of different cell lines for FV entry correlated with the amount of heparan sulfate present on the cell surface. The resulting 50% cell culture infectious doses (CCID(50)s) were distributed over a range of 4 logs, which means that the most susceptible cell line tested (HT1080) was more than 10,000 times more susceptible for PFV infection than the least susceptible cell line (CRL-2242). HS surface expression varied over a range of 2 logs. HS expression and FV susceptibility were positively correlated (P < 0.001). Enzymatic digestion of heparan sulfate on HT1080 cells diminished permissivity for PFV entry by a factor of at least 500. Using fast protein liquid chromatography (FPLC), we demonstrated binding of FV vector particles to a gel filtration column packed with heparin, a molecule structurally related to heparan sulfate, allowing for the purification of infectious particles. Both PFV and FFV infection were inhibited by soluble heparin. Our results show that FVs bind to HS and that this interaction is a pivotal step for viral entry, suggesting that HS is a cellular attachment factor for FVs.  相似文献   

17.
The hepatitis delta virus (HDV) is a small, defective RNA virus that requires the presence of the hepatitis B virus (HBV) for its life cycle. Worldwide more than 15 million people are co-infected with HBV and HDV. Although much effort has been made, the early steps of the HBV/HDV entry process, including hepatocyte attachment and receptor interaction are still not fully understood. Numerous possible cellular HBV/HDV binding partners have been described over the last years; however, so far only heparan sulfate proteoglycans have been functionally confirmed as cell-associated HBV attachment factors. Recently, it has been suggested that ionotrophic purinergic receptors (P2XR) participate as receptors in HBV/HDV entry. Using the HBV/HDV susceptible HepaRG cell line and primary human hepatocytes (PHH), we here demonstrate that HDV entry into hepatocytes depends on the interaction with the glycosaminoglycan (GAG) side chains of cellular heparan sulfate proteoglycans. We furthermore provide evidence that P2XR are not involved in HBV/HDV entry and that effects observed with inhibitors for these receptors are a consequence of their negative charge. HDV infection was abrogated by soluble GAGs and other highly sulfated compounds. Enzymatic removal of defined carbohydrate structures from the cell surface using heparinase III or the obstruction of GAG synthesis by sodium chlorate inhibited HDV infection of HepaRG cells. Highly sulfated P2XR antagonists blocked HBV/HDV infection of HepaRG cells and PHH. In contrast, no effect on HBV/HDV infection was found when uncharged P2XR antagonists or agonists were applied. In summary, HDV infection, comparable to HBV infection, requires binding to the carbohydrate side chains of hepatocyte-associated heparan sulfate proteoglycans as attachment receptors, while P2XR are not actively involved.  相似文献   

18.
Borrelia burgdorferi, the agent of Lyme disease, spreads from the site of the tick bite to tissues such as heart, joints and the nervous tissues. Host glycosaminoglycans, highly modified repeating disaccharides that are present on cell surfaces and in extracellular matrix, are common targets of microbial pathogens during tissue colonization. While several dermatan sulfate‐binding B. burgdorferi adhesins have been identified, B. burgdorferi adhesins documented to promote spirochetal binding to heparan sulfate have not yet been identified. OspEF‐related proteins (Erps), a large family of plasmid‐encoded surface lipoproteins that are produced in the mammalian host, can be divided into the OspF‐related, OspEF‐leader peptide (Elp) and OspE‐related subfamilies. We show here that a member of the OspF‐related subfamily, ErpG, binds to heparan sulfate and when produced on the surface of an otherwise non‐adherent B. burgdorferi strain, ErpG promotes heparan sulfate‐mediated bacterial attachment to the glial but not the endothelial, synovial or respiratory epithelial cells. Six other OspF‐related proteins were capable of binding heparan sulfate, whereas representative OspE‐related and Elp proteins lacked this activity. These results indicate that OspF‐related proteins are heparan sulfate‐binding adhesins, at least one of which promotes bacterial attachment to glial cells.  相似文献   

19.
The attachment and detachment behavior of three mouse fibroblast cell lines adhering to plastic tissue culture substrata coated with the serum protein cold-insoluble globulin (CIg) resembles that seen on the usual serumcoated substrata. The transformed cell line SVT2 spreads more extensively on the CIg-coated than on the serum-coated substratum, while the nontransformed Balb/c 3T3 line and concanavalin A-selected “revertant” of SVT2 are equally well spread on both substrata. In all three cases, immunofluorescence microscopy using antibodies to CIg suggests that the cells are more tightly apposed to the CIg-coated substratum than to the serum-coated substratum. Substrate-attached material (SAM), which contains cell-substratum adhesion sites and which is left after EGTA-mediated detachment of cells, is enriched for cell surface fibronectin and glycosaminoglycans (GAG). When cells are seeded onto CIg-coated substrata rather than serum-coated substrata, there is an increased deposition of GAG but a comparable deposition of cellular proteins. The protein distribution of the two types of SAM are identical as analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, including fibronectin content. This indicates that substratum-bound CIg cannot functionally substitute for cell surface fibronectin in these adhesion sites. Analysis of the GAG deposited on CIg-coated substrata reveals that hyaluronate and the chondroitins are increased to a much greater extent than heparan sulfate; however, the ratio of hyaluronate to the various chondroitin species is invariant. These data provide further evidence that hyaluronate and the chondroitins are deposited in adhesion sites in well-defined stoichiometric proportions, possibly as supramolecular complexes, and that CIg may mediate adhesion of cells in the serum layer by binding to GAG-containing proteoglycans.  相似文献   

20.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号