首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
2.
3.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

4.
Fruit ripening can be considered as a complex set of biochemical and physiological changes occurring at the end of the developmental stage. Ripe fruit texture notably affects overall quality and consumer appreciation. Excessive softening limits shelf-life and storability, thereby increasing disease susceptibility and economic loss. Fruit softening is a process due to the depolymerisation of different polysaccharide classes, an event controlled by a synergic and coordinated action of several enzymes among which expansins play a fundamental role. To date, six expansin genes are known to be expressed during apple fruit ontogeny, from full bloom up to fruit ripening. We identified a novel expansin apple homolog (Md-Exp7) sharing high sequence similarity with specific-ripening expansin genes of other crops. A functional marker (Md-Exp7SSR) based on an SSR motif located within the untranslated region of the gene was developed and mapped on Linkage Group 1 of the apple and pear genomes in a region where one major apple QTL for fruit firmness had been previously identified. The allelic composition of 31 apple varieties for the SSR marker was associated with differences in fruit softening.  相似文献   

5.
Expressed sequence tags from persimmon at different developmental stages   总被引:1,自引:0,他引:1  
Persimmon (Diospyros kaki Thunb.) is an important fruit in Asian countries, where it is eaten as a fresh fruit and is also used for many other purposes. To understand the molecular mechanism of fruit development and ripening in persimmon, we generated a total of 9,952 expressed sequence tags (ESTs) from randomly selected clones of two different cDNA libraries. One cDNA library was derived from fruit of “Saijo” persimmon at an early stage of development, and the other from ripening fruit. These ESTs were clustered into 6,700 non-redundant sequences. Of the 6,700 non-redundant sequences evaluated, the deduced amino acid sequences of 4,356 (65%) showed significant homology to known proteins, and 2,344 (35%) showed no significant similarity to any known proteins in Arabidopsis databases. We report comparison of genes identified in the two cDNA libraries and describe some putative genes involved in proanthocyanidin and carotenoid synthesis. This study provides the first global overview of a set of genes that are expressed during fruit development and ripening in persimmon.  相似文献   

6.
Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages.  相似文献   

7.
8.
9.
10.
Apple research has undergone great improvements in the last years, in both quantitative and qualitative terms. Huge amount of data are now available, especially as far as the early development and the ripening phase are concerned. Moreover, the recent release of the apple genome sequence is significantly speeding up research, allowing on one hand to shed light on the most critical aspects of fruit development with almost immediate practical implications and, on the other hand, to identify new molecular markers that will improve the future breeding programs. In this context, apple is being increasingly considered as a model for fruit development studies, although many gaps still exist in apple research. These gaps are being filled by coupling the next generation high-throughput technologies with new physiological approaches, aimed at achieving both new basic knowledge and innovative tools to improve the final quality of the fruit. In this review, the available information on the regulatory aspects of apple fruit development will be reported and discussed in the light of the future perspectives of apple research.  相似文献   

11.
12.
To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence.  相似文献   

13.
14.
The citrus fruit proteome: insights into citrus fruit metabolism   总被引:1,自引:0,他引:1  
Katz E  Fon M  Lee YJ  Phinney BS  Sadka A  Blumwald E 《Planta》2007,226(4):989-1005
Fruit development and ripening are key processes in the production of the phytonutrients that are essential for a balanced diet and for disease prevention. The pathways involved in these processes are unique to plants and vary between species. Climacteric fruit ripening, especially in tomato, has been extensively studied; yet, ripening of non-climacteric fruit is poorly understood. Although the different species share common pathways; developmental programs, physiological, anatomical, biochemical composition and structural differences must contribute to the operation of unique pathways, genes and proteins. Citrus has a non-climacteric fruit ripening behavior and has a unique anatomical fruit structure. For the last few years a citrus genome-wide ESTs project has been initiated and consists of 222,911 clones corresponding to 19,854 contigs and 37,138 singletons. Taking advantage of the citrus database we analyzed the citrus proteome. Using LC-MS/MS we analyzed soluble and enriched membrane fractions of mature citrus fruit to identify the proteome of fruit juice cells. We have identified ca. 1,400 proteins from these fractions by searching NCBI-nr (green plants) and citrus ESTs databases, classified these proteins according to their putative function and assigned function according to known biosynthetic pathways.  相似文献   

15.
果实的成熟过程是由一系列生理生化变化过程组成,这些变化过程受到外界环境条件、植物激素和基因的调控。随着近年来有关果实成熟衰老的基因的分离、定性及反义基因技术在控制果实成熟上的成功应用,对揭示果实成熟衰老的分子机理起到了重要作用。本文就近年来果实成熟基因调控研究进展作一简要评述 。  相似文献   

16.
Development of ESTs and data mining of pineapple EST-SSRs   总被引:1,自引:0,他引:1  
  相似文献   

17.
Protected cropping systems have been adopted by the UK industry to improve fruit quality and extend the current season. Further manipulation of season, alongside consideration of climate change scenarios, requires an understanding of the processes controlling fruit ripening. Ripening stages were scored from May to July across different years and environments from a raspberry mapping population. Here the interest was in identifying QTLs for the overall ripening process as well as for the time to reach each stage, and principal coordinate analysis was used to summarise the ripening process. Linear interpolation was also used to estimate the time (in days) taken for each plot to reach each of the stages assessed. QTLs were identified across four chromosomes for ripening and the time to reach each stage. A MADS-box gene, Gene H and several raspberry ESTs were associated with the QTLs and markers associated with plant height have also been identified, paving the way for marker assisted selection in Rubus idaeus.  相似文献   

18.
In developing plants, free N-glycans occur ubiquitously at micromolar concentrations. Such oligosaccharides have been proposed to be signaling molecules in plant development. As a part of a study to elucidate the physiological roles of de-N-glycosylation machinery involved in fruit ripening, we analyzed changes in the amounts and structural features of free N-glycans in tomato fruits at four ripening stages. The amount of high-mannose type free N-glycans increased significantly in accordance with fruit ripening, and the relative amounts of high-molecular size N-glycans, such as Man8-9GlcNAc1, became predominant. These observations suggest that the de-N-glycosylation machinery, including endo-β-N-acetylglucosaminidase (ENGase) activity, is stimulated in the later stages of fruit ripening. But contrary to expectation, we found that total ENGase activities in the tomato fruits did not vary significantly with the ripening process, suggesting that ENGase activity must be maintained at a certain level, and that the expression of α-mannosidase involved in the clearance of free N-glycans decreases during tomato fruit ripening.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号