首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Reactions leading to the formation of 14C-labelled volatile compounds and compounds volatile under acid conditions were investigated in a system actively synthesizing hexose 6-phosphates from [U-14C]ribose 5-phosphate by reactions catalysed by enzymes prepared from acetone-dried powder of rat liver; no reactions involving 14C-labelled volatile compounds were detected. Similarly the fixation of 14C-labelled volatile compounds into hexose 6-phosphate could not be detected. 2. A complete carbon balance was made for the reactants, intermediates and products of the reactions involved in the conversion of ribose 5-phosphate into hexose 6-phosphate by enzymes of rat liver. Five additional intermediates of pentose 5-phosphate metabolism in liver were detected, namely D-manno-heptulose 7-phosphate, D-altro-heptulose 1,7-bisphosphate, D-glycero-D-ido-octulose 1,8-bisphosphate, D-glycero-D-altro-octulose 1,8-bisphosphate and D-arabinose 5-phosphate. 3. D-Arabinose 5-phosphate was found to be utilized by a rat liver enzyme preparation to produce both hexose 6-phosphate and triose phosphate. 4. D-Arabinose 5-phosphate was reversibly converted into other pentose 5-phosphates. Paper chromatographic and enzymic evidence indicated that the conversion involved an enzyme tentatively named arabinose phosphate 2-epimerase, which catalyses the following reaction: D-arabinose 5-P in equilibrium D-ribose-5-P. 5. A variety of rat tissues also utilized D-arabinose 5-phosphate to produce both hexose 6-phosphate and triose phosphate and at a rate comparable with that obtained with D-ribose 5-phosphate. 6. A new reaction sequence for the non-oxidative pentose phosphate pathway in liver is proposed.  相似文献   

2.
A number of selection strategies have been devised to obtain mutations in the non-oxidative pentose phosphate pathway in the yeastSaccharomyces cerevisiae. Some of these schemes exploit the bidirectionality of this pathway by selecting for mutants that can grow on a mixture of two carbon sources, which allow the pathway to function in opposite directions, while failing to utilize either of them alone. Other strategies select for mutations that prevent growth on glucono-5-lactone or xylulose, compounds metabolized exclusively through the pentose phosphate pathway. In the present study, these schemes yielded 35 mutants that define 11 genetic complementation groups. None of these mutations, however, affected the activity of the pathway enzymes, assayed in cell-free extracts. Nevertheless, the mutants were deficient in various aspects of carbohydrate metabolism and in the biosynthesis of the aromatic amino acids. The problems associated with the selection of mutants directly affected in the functioning of the enzymes of the non-oxidative pentose phosphate pathway have been discussed.  相似文献   

3.
Methods for the quantitative determination of ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, transketolase and transaldolase in tissue extracts are described. The determinations depend on the measurement of glyceraldehyde 3-phosphate by using the coupled system triose phosphate isomerase, α-glycero-phosphate dehydrogenase and NADH. By using additional purified enzymes transketolase, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase conditions could be arranged so that each enzyme in turn was made rate-limiting in the overall system. Transaldolase was measured with fructose 6-phosphate and erythrose 4-phosphate as substrates, and again glyceraldehyde 3-phosphate was measured by using the same coupled system. Measurements of the activities of the non-oxidative reactions of the pentose phosphate pathway were made in a variety of tissues and the values compared with those of the two oxidative steps catalysed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.  相似文献   

4.
5.
Physiological functions of the pentose phosphate pathway   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
Saccharomyces cerevisiae is able to ferment xylose, when engineered with the enzymes xylose reductase (XYL1) and xylitol dehydrogenase (XYL2). However, xylose fermentation is one to two orders of magnitude slower than glucose fermentation. S. cerevisiae has been proposed to have an insufficient capacity of the non-oxidative pentose phosphate pathway (PPP) for rapid xylose fermentation. Strains overproducing the non-oxidative PPP enzymes ribulose 5-phosphate epimerase (EC 5.1.3.1), ribose 5-phosphate ketol isomerase (EC 5.3.1.6), transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1), as well as all four enzymes simultaneously, were compared with respect to xylose and xylulose fermentation with their xylose-fermenting predecessor S. cerevisiae TMB3001, expressing XYL1, XYL2 and only overexpressing XKS1 (xylulokinase). The level of overproduction in S. cerevisiae TMB3026, overproducing all four non-oxidative PPP enzymes, ranged between 4 and 23 times the level in TMB3001. Overproduction of the non-oxidative PPP enzymes did not influence the xylose fermentation rate in either batch cultures of 50 g l(-1) xylose or chemostat cultures of 20 g l(-1) glucose and 20 g l(-1) xylose. The low specific growth rate on xylose was also unaffected. The results suggest that neither of the non-oxidative PPP enzymes has any significant control of the xylose fermentation rate in S. cerevisiae TMB3001. However, the specific growth rate on xylulose increased from 0.02-0.03 for TMB3001 to 0.12 for the strain overproducing only transaldolase (TAL1) and to 0.23 for TMB3026, suggesting that overproducing all four enzymes has a synergistic effect. TMB3026 consumed xylulose about two times faster than TMB30001 in batch culture of 50 g l(-1) xylulose. The results indicate that growth on xylulose and the xylulose fermentation rate are partly controlled by the non-oxidative PPP, whereas control of the xylose fermentation rate is situated upstream of xylulokinase, in xylose transport, in xylose reductase, and/or in the xylitol dehydrogenase.  相似文献   

8.
The pentose phosphate pathway and parasitic protozoa   总被引:2,自引:0,他引:2  
The pentose phosphate pathway plays a crucial role in the host-parasite relationship. It maintains a pool of NADPH, which serves to protect against oxidant stress and which generates carbohydrate intermediates used in nucleotide and other biosynthetic pathways. Deficiency in the first enzyme of the pathway, glucose-6-phosphate dehydrogenase, protects human erythrocytes from infection with Plasmodium falciparum for reasons that remain obscure. Loss of the third enzyme of the pathway, 6-phosphogluconate de-hydrogenase, is toxic, suggesting this enzyme might be a target for chemotherapy. Mike Barrett here summarizes the roles of the pentose phosphate pathway in various parasitic protozoa.  相似文献   

9.
J. A. Pryke  T. ap Rees 《Planta》1976,131(3):279-284
Summary We did this work to see if there is a correlation between lignin synthesis and the activity of the pentose phosphate pathway. Excision of the third internode of the stem of Coleus blumei Benth. followed by incubation on sucrose and indoleacetic acid led to extensive formation of tracheids. During this lignification we determined the activities of glucose-6-phosphate dehydrogenase and fructose-1,6-diphosphate aldolase, and the extent to which [1-14C]-,[3,4-14C]-, and [6-14C]glucose labelled CO2 and the major cellular components. The results indicate that the pentose phosphate pathway was active during lignification, and that the activity of this pathway relative to glycolysis increased at the onset of lignification. Explants of storage tissue of Helianthus tuberosus L. were cultured under conditions which caused extensive lignification. 14CO2 production from [1-14C]-, [3,4-14C]-, and [6-14C]glucose indicated activity of the pentose phosphate pathway during tracheid formation. We suggest that lignification is accompanied by appreciable activity of the pentose phosphate pathway and that this could provide the reducing power for lignin synthesis.Abbreviations NADP nicotinamide-adenine dinucleotide phosphate - IAA indoleacetic acid  相似文献   

10.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

11.
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.  相似文献   

12.
【目的】通过系统研究一个、两个及多个非氧化磷酸戊糖(PP)途径基因组合过表达对酿酒酵母木糖代谢的影响,以优化重组菌株的构建过程,构建高效的木糖代谢酿酒酵母菌株。【方法】在酿酒酵母中双拷贝过表达上游代谢途径的关键酶(木糖还原酶XR,木糖醇脱氢酶XDH,木酮糖激酶XKS),在此基础上构建了一系列PP途径基因过表达菌株,并对其木糖发酵性能进行比较研究。【结果】木糖发酵结果显示,不同组合过表达PP途径基因能不同程度改善重组菌株的木糖发酵性能。其中,过表达PP途径全部基因(RKI1,RPE1,TAL1和TKL1)使菌株的发酵性能最优,其乙醇产率和产量较对照菌株分别提高了39.25%和12.57%,同时较其他基因组合过表达菌株也有不同程度的改善。【结论】通过构建PP途径基因不同组合过表达酿酒酵母菌株,首次对PP途径基因对酿酒酵母木糖代谢的影响进行了系统研究,结果表明,不同组合强化PP途径基因对重组菌株木糖代谢的影响存在差异,相对于其他基因过表达组合,同步过表达PP途径全部基因最有利于碳通量流向乙醇。  相似文献   

13.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

14.
Approximately the same levels of six of the seven enzymes catalyzing reactions of the pentose phosphate pathway are in the cisternae of washed microsomes from rat heart, spleen, lung, and brain. Renal and hepatic microsomes also have detectable levels of these enzymes except ribulose-5-phosphate epimerase and ribose-5-phosphate isomerase. Their location in the cisternae is indicated by their latencies, i.e. requirement for disruption of the membrane for activity. In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes. The failure to detect the epimerase and isomerase in hepatic microsomes is due to inhibition of their assays by ketopentose-5-phosphatase. Xylulose 5-phosphate is hydrolyzed faster than ribulose 5-phosphate. A mild heat treatment destroys hepatic xylulose-5-phosphatase and glucose-6-phosphatase without affecting acid phosphatase. These results plus the established wide distribution of glucose dehydrogenase, the microsomal glucose-6-phosphate dehydrogenase, and its localization to the lumen of the endoplasmic reticulum suggest that most mammalian cells have two sets of enzymes of the pentose phosphate pathway: one is cytoplasmic and the other is in the endoplasmic reticulum. The activity of the microsomal pentose phosphate pathway is estimated to be about 1.5% that of the cytoplasmic pathway.  相似文献   

15.
Mutants of the pentose phosphate pathway have been isolated in Aspergillus nidulans. These fail to grow on a variety of carbohydrates that are catabolized through the pentose phosphate pathway. They also grow poorly on nitrate and nitrite as sole nitrogen sources. The pentose phosphate pathway mutations have been assigned to two unlinked genes. Mutants with lesions in the pppB locus have reduced activities of four enzymes of the pentose phosphate pathway, of glucose-phosphate isomerase, and of mannitol-1-phosphate dehydrogenase. pppA(-) mutants have elevated activities of these same enzymes except for transaldolase, for which they have much reduced activity. Both classes of mutants accumulate sedoheptulose-7-phosphate to an extent that is increased considerably when nitrate is present in the medium. Nitrate does not cause an increase in accumulation of sedoheptulose-7-phosphate in double mutants which, in addition to the pppA1 mutation, carry a mutation that leads to the lack of nitrate reductase activity. These last results suggest that nitrate stimulates the flux through the oxidative pentose phosphate pathway, but that this stimulation depends upon the metabolism of nitrate.  相似文献   

16.
17.
1. Measurements were made of the activities of enzymes of the pentose phosphate cycle, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase, as well as of the related or competing enzymes glucokinase, hexokinase, phosphoglucose isomerase and phosphoglucomutase, in control rats and in rats bearing the growth-hormone- and prolactin-secreting pituitary tumour MtTW5, to study the effect of high endogenous concentrations of growth hormone on this pathway in liver. 2. There was a twofold increase in liver weight. Glucokinase activity/g. of liver decreased to half the control value in the experimental group, although on a total liver basis it remained unchanged. Hexokinase activity increased in parallel with the liver weight, so that the total activity was doubled in rats with a high endogenous concentration of growth hormone. No differences in response were found between heat-stable and heat-labile forms of hexokinase. 3. The activity/g. of liver of the two oxidative enzymes of the pathway decreased slightly in the experimental group, but this was offset by the increase in liver weight, and the resultant effect was a 50% increase in the total activity. 4. Of the non-oxidative enzymes of the cycle the most marked increase on a total liver basis was in ribose 5-phosphate isomerase activity, to 2.5 times the control value. Ribulose 5-phosphate epimerase activity showed the smallest increase. Transketolase and transaldolase activities were also increased. The latter is the rate-limiting enzyme of the non-oxidative reactions of the cycle in these animals. 5. The results are discussed in relation to the glycolytic pathway and synthesis of glycogen, and more particularly to the increased requirement for ribose 5-phosphate for RNA synthesis.  相似文献   

18.
19.
20.
The oxidative pentose phosphate pathway: structure and organisation   总被引:1,自引:0,他引:1  
The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号