首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine protease inhibitors (serpins), the antagonists of serine proteases, were unknown in the bacterial kingdom until recently. Kang et al. in this issue of Molecular Microbiology report the cloning and functional analysis of the three serpin genes from the thermophilic anaerobic bacterium Clostridium thermocellum. Two of the serpins contain a dockerin module for location in the extracellular hydrolytic multienzyme complex, the cellulosome. The susceptibility of cellulosome to proteolytic degradation and the presence of a serine protease in the same complex provoke speculation that protease inhibitor/protease pairs could play hitherto unrecognized roles in protein stability and regulation in bacteria.  相似文献   

2.
Han J  Zhang H  Min G  Kemler D  Hashimoto C 《FEBS letters》2000,468(2-3):194-198
Serpins define a large protein family in which most members function as serine protease inhibitors. Here we report the results of a search for serpins in Drosophila melanogaster that are potentially required for oogenesis or embryogenesis. We cloned and sequenced ovarian cDNAs that encode six distinct proteins having extensive sequence similarity to mammalian serpins, including residues important in the serpin inhibition mechanism. One of these new serpins in recombinant form inactivates, and complexes with, trypsin-like proteases in vitro. To our knowledge, these results represent the first evidence for a serpin in Drosophila that functions as a serine protease inhibitor.  相似文献   

3.
Thrombin uses three principal sites, the active site, exosite I, and exosite II, for recognition of its many cofactors and substrates. It is synthesized in the zymogen form, prothrombin, and its activation at the end of the blood coagulation cascade results in the formation of the active site and exosite I and the exposure of exosite II. The physiological inhibitors of thrombin are all serpins, whose mechanism involves significant conformational change in both serpin and protease. It has been shown that the formation of the thrombin-serpin final complex disorders the active site and exosite I of thrombin, but exosite II is thought to remain functional. It has also been hypothesized that thrombin contains a receptor-binding site that is exposed upon final complex formation. The position of this cryptic site may depend on the regions of thrombin unfolded by serpin complexation. Here we investigate the conformation of thrombin in its final complex with serpins and find that in addition to exosite I, exosite II is also disordered, as reflected by a loss of affinity for the γ'-peptide of fibrinogen and for heparin and by susceptibility to limited proteolysis. This disordering of exosite II occurs for all tested natural thrombin-inhibiting serpins. Our data suggest a novel framework for understanding serpin function, especially with respect to thrombin inhibition, where serpins functionally "rezymogenize" proteases to ensure complete loss of activity and cofactor binding.  相似文献   

4.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   

5.
Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin’s multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective.  相似文献   

6.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor (serpin) which is thought to be a physiological regulator of activated protein C (APC). The residues F353-R354-S355 (P2-P1-P1′) constitute part of the reactive site loop of PCI with the R-S peptide bond being cleaved by the proteinase. Changing the reactive site P1 and P2 residues to those of either proteinase nexin-1, α1-proteinase inhibitor or heparin cofactor II resulted in a decrease in inhibitory activity towards thrombin and APC. Changing the P2 residue F353 → P generated a rPCI which was a better thrombin inhibitor, but was 10-fold less active with APC. While these results support the concept that the P1 and P2 residues are important in the specificity of PCI, they suggest that the reactive site residues are not the only determinant of serpin specificity. Kinetic analysis of the rPCI variants was consistent with PCI operating by a mechanism similar to that proposed for other serpins. In this model an intermediary complex forms between inhibitor and proteinase that can proceed to either cleavage of the inhibitor as substrate or formation of an inactive complex.  相似文献   

7.
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites.  相似文献   

8.
Serine protease inhibitors (serpins) play very important roles in the maintenance of various physiologically important systems. As knowledge of the workings of proteins of this family grows, new understanding is gained of the mechanisms by which they inhibit target proteases, using conformational changes for which the structure of serpins is uniquely adapted. This finely balanced system is utilized to healthy benefit in the control of serpin function by modulators, arguably the most striking examples of which occur in the control of proteolytic cascades, such as the coagulation system. Serpins also play very important intracellular roles: one example is the protection of immune cells from their own cytotoxic proteases. The finely balanced serpin mechanism also means that it is prone to disastrous consequences if mutations should occur in vital positions in the serpin structure. Many examples of disease-associated mutations have been shown, which has the dual effect of highlighting how important these molecules are in the maintenance of health and the fine balance that must be maintained in order to preserve their active, inhibitory conformation.  相似文献   

9.
Corticosteroid-binding globulin (CBG) is a serine proteinase inhibitor (serpin) family member that transports glucocorticoids in blood and regulates their access to target cells. The 1.9A crystal structure of rat CBG shows that its steroid-binding site resembles the thyroxin-binding site in the related serpin, thyroxin-binding globulin, and mutagenesis studies have confirmed the contributions of key residues that constitute the steroid-binding pocket. Unlike thyroxin-bound thyroxin-binding globulin, the cortisol-bound CBG displays an "active" serpin conformation with the proteinase-sensitive, reactive center loop (RCL) fully expelled from the regulatory beta-sheet A. Moreover, the CBG structure allows us to predict that complete insertion of the proteolytically cleaved RCL into the serpin fold occurs in concert with a displacement and unwinding of helix D that would disrupt the steroid-binding site. This allosteric coupling between RCL positioning and occupancy of the CBG steroid-binding site, which resembles the ligand (glycosamino-glycan)-dependent activation of the thrombin inhibitory serpins heparin cofactor II and anti-thrombin RCLs, ensures both optimal recognition of CBG by target proteinases and efficient release of steroid to sites of action.  相似文献   

10.
Serpins form a family of structurally related proteins, many of which function in plasma as inhibitors of serine proteases involved in inflammation, blood coagulation, fibrinolysis, and complement activation. To further characterize the mechanism by which serpins inhibit their target enzymes, we have studied the effect of temperature on the reaction of C1 inhibitor and the serine protease plasma kallikrein. At both 38 and 4 degrees C, C1 inhibitor (Mr 105,000) is cleaved by alpha-kallikrein (Mr 85,000 and 88,000) at position P1 (Arg444) of the reactive center, a reaction that leads to the formation of a covalent bimolecular enzyme-serpin complex (Mr 195,000) and cleaved but uncomplexed serpin (Mr 95,000). Between 38 and 4 degrees C, the product distribution is temperature-dependent, with more cleaved C1 inhibitor (Mr 95,000) formed at lower temperatures and correspondingly less Mr 195,000 complex. Studies employing intrinsic tryptophan fluorescence and 1H NMR spectroscopy show that this behavior is not caused by temperature-dependent conformational changes of kallikrein or C1 inhibitor. C1 inhibitor also behaves in this manner with the light chain of kallikrein and, to a lesser extent, with plasmin and C1s. These data are best explained by a branched reaction pathway, identical with the scheme describing the mechanism of action of suicide substrates. This scheme involves the formation of an enzyme-inhibitor intermediate, which can be stabilized into a covalent complex and/or dissociate into free enzyme and cleaved inhibitor, depending on the reaction conditions.  相似文献   

11.
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants.  相似文献   

12.
Serine protease inhibitors (serpins) regulate the activities of circulating proteases. Serpins inhibit proteases by acylating the serine hydroxyl at their active sites. Before deacylation and complete proteolysis of the serpin can occur, massive conformational changes are triggered in the serpin while maintaining the covalent linkage between the protease and serpin. Here we report the structure of a serpin-trypsin Michaelis complex, which we visualized by using the S195A trypsin mutant to prevent covalent complex formation. This encounter complex reveals a more extensive interaction surface than that present in small inhibitor-protease complexes and is a template for modeling other serpin-protease pairs. Mutations of several serpin residues at the interface reduced the inhibitory activity of the serpin. The serine residue C-terminal to the scissile peptide bond is found in a closer than usual interaction with His 57 at the active site of trypsin.  相似文献   

13.
Serpins are serine protease inhibitors with a conserved structure that have been identified in nearly all species and act as suicide substrates by binding covalently to their target proteases. Serpins regulate various physiological processes and defence mechanisms. In humans, several serpin mutations are linked to diseases. The genome of Drosophila melanogaster encodes 29 serpins and even more serine proteases. To date, three serpins have been investigated in detail. Spn27A controls the Toll pathway during early development and is involved in defence reactions in adult flies. SPN42DaA is an inhibitor of furin, a subtilisin-like convertase that is required for pro-protein maturation. Spn43Ac controls the Toll pathway during the immune response. In each case, Drosophila genetics has shed new light on the function of these serine protease inhibitors.  相似文献   

14.
Serpins are irreversible covalent 'suicide' protease inhibitors. In the past two years, important advances in the structural biology of serpins have been forthcoming with the crystal structures of a covalent complex between trypsin and alpha1-antitrypsin, and of a Michaelis encounter complex between trypsin S195A and serpin 1B from Manduca sexta. These structures have helped elucidate many aspects of the mechanism of action of serpins. Also, the crystal structure of the cysteine protease caspase-8 in complex with the inhibitor p35 has revealed a new family of suicide protease inhibitors.  相似文献   

15.
Ixodes scapularis is a medically important tick species that transmits causative agents of important human tick-borne diseases including borreliosis, anaplasmosis and babesiosis. An understanding of how this tick feeds is needed prior to the development of novel methods to protect the human population against tick-borne disease infections. This study characterizes a blood meal-induced I. scapularis (Ixsc) tick saliva serine protease inhibitor (serpin (S)), in-house referred to as IxscS-1E1. The hypothesis that ticks use serpins to evade the host’s defense response to tick feeding is based on the assumption that tick serpins inhibit functions of protease mediators of the host’s anti-tick defense response. Thus, it is significant that consistent with hallmark characteristics of inhibitory serpins, Pichia pastoris-expressed recombinant IxscS-1E1 (rIxscS-1E1) can trap thrombin and trypsin in SDS- and heat-stable complexes, and reduce the activity of the two proteases in a dose-responsive manner. Additionally, rIxscS-1E1 also inhibited, but did not apparently form detectable complexes with, cathepsin G and factor Xa. Our data also show that rIxscS-1E1 may not inhibit chymotrypsin, kallikrein, chymase, plasmin, elastase and papain even at a much higher rIxscS-1E1 concentration. Native IxscS-1E1 potentially plays a role(s) in facilitating I. scapularis tick evasion of the host’s hemostatic defense as revealed by the ability of rIxscS-1E1 to inhibit adenosine diphosphate- and thrombin-activated platelet aggregation, and delay activated partial prothrombin time and thrombin time plasma clotting in a dose-responsive manner. We conclude that native IxscS-1E1 is part of the tick saliva protein complex that mediates its anti-hemostatic, and potentially inflammatory, functions by inhibiting the actions of thrombin, trypsin and other yet unknown trypsin-like proteases at the tick–host interface.  相似文献   

16.
Pak SC  Tsu C  Luke CJ  Askew YS  Silverman GA 《Biochemistry》2006,45(14):4474-4480
Members of the intracellular serpin family may help regulate apoptosis, tumor progression, and metastasis. However, their in vivo functions in the context of a whole organism have not been easily defined. To better understand the biology of these serpins, we initiated a comparative genomics study using Caenorhabditis elegans as a model organism. Previous in silico analysis suggested that the C. elegans genome harbors nine serpin-like sequences bearing significant similarities to the human clade B intracellular serpins. However, only five genes appear to encode full-length serpins with intact reactive site loops. To determine if this was the case, we have cloned and expressed a putative inhibitory-type C. elegans serpin, srp-3. Analysis of SRP-3 inhibitory activity indicated that SRP-3 was a potent inhibitor of the serine peptidases, chymotrypsin and cathepsin G. Spatial and temporal expression studies using GFP and LacZ promoter fusions indicated that SRP-3 was expressed primarily in the anterior body wall muscles, suggesting that it may play a role in muscle cell homeostasis. Combined with previous studies showing that SRP-2 is an inhibitor of the serine peptidase, granzyme B, and lysosomal cysteine peptidases, these data suggested that C. elegans expressed at least two inhibitory-type serpins with nonoverlapping expression and inhibitory profiles. Moreover, the profiles of these clade L serpins in C. elegans share significant similarities with the profiles of clade B intracellular serpin members in higher vertebrates. This degree of conservation suggests that C. elegans should prove to be a valuable resource in the study of metazoan intracellular serpin function.  相似文献   

17.
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.  相似文献   

18.
Luo LY  Jiang W 《Biological chemistry》2006,387(6):813-816
Accumulated evidence has shown that human tissue kallikreins (hKs), a group of 15 homologous secreted serine proteases, are novel cancer biomarkers. We report here the inhibition profiles of selected hKs, including hK5, hK7, hK8, hK11, hK12, hK13, and hK14, by several common serine protease inhibitors (serpins) found in plasma. The association constants for the binding of serpins to kallikreins were determined and compared. Protein C inhibitor was found to be the fastest-binding serpin for most of these hKs. alpha2-Antiplasmin, alpha1-antichymotrypsin, and alpha1-antitrypsin also showed rapid inhibition of certain hKs. Kallistatin exhibited fast inhibition only with hK7. Our data demonstrate that these hKs are specifically regulated by certain serpins and their distinct inhibition profiles will be valuable aids in various aspects of kallikrein research.  相似文献   

19.
Serpins are members of a family of structurally related protein inhibitors of serine proteinases, with molecular masses between 40 and 100kDa. In contrast to other, simpler, proteinase inhibitors, they may interact with proteinases as inhibitors, as substrates, or as both. They undergo conformational interconversions upon complex formation with proteinase, upon binding of some members to heparin, upon proteolytic cleavage at the reactive center, and under mild denaturing conditions. These conformational changes appear to be critical in determining the properties of the serpin. The structures and stabilities of these various forms may differ significantly. Although the detailed structural changes required for inhibition of proteinase have yet to be worked out, it is clear that the serpin does undergo a major conformational change. This is in contrast to other, simpler, families of protein inhibitors of serine proteinases, which bind in a substrate-like or product-like manner. Proteolytic cleavage of the serpin can result in a much more stable protein with new biological properties such as chemo-attractant behaviour. These structural transformations in serpins provide opportunities for regulation of the activity and properties of the inhibitor and are likely be important in vivo, where serpins are involved in blood coagulation, fibrinolysis, complement activation and inflammation.  相似文献   

20.
Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II. We show here that substitution of all three lysine residues for glutamines caused cellular necrosis and premature death in Drosophila in keeping with a loss of function phenotype. The lysine to glutamine substitutions had no effect on the overall structure of recombinant Necrotic protein but abolished the formation of stable complexes with target proteases. Individual substitutions with either glutamine or alanine demonstrated that lysine 68 was the most critical residue for inhibitory activity. Despite the homology to other serpins, Necrotic did not bind, nor was it activated by sulfated glycans. These data demonstrate a critical role for basic residues within the D-helix (and lysine 68 in particular) in the inhibitory mechanism of the serpin Necrotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号