首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The vascular wall is mainly composed of endothelial cells (ECs) and smooth muscle cells (SMCs). The crosstalking between these two cell types is critical in the vascular maturation process. Genetic studies suggest that the Tie2/angiopoietin 1 (Ang1) pathway regulates vascular remodeling. However, the molecular mechanism is unclear. PDGF is a potent chemoattractant for SMCs, and TGF-beta regulates SMC differentiation. Here, we examined gene regulation. PDGF-B stimulation upregulated Ang1 expression in SMCs through the PI3K and PKC pathways. PDGF-B stimulation also produced an acute induction of TGF-beta expression in SMCs through the MAPK/ERK pathway. Interestingly, TGF-beta negatively regulated Ang1 expression induced by the PDGF-B stimulation in SMCs. Reciprocally, we observed that stimulation of ECs with either Ang1 or TGF-beta slightly downregulated PDGF expression. A combination of both TGF-beta with Ang1 produced much stronger downregulation of PDGF. Our data showed complex gene regulations that include both positive and negative regulations between ECs and SMCs to maintain vascular homeostasis.  相似文献   

2.
Angiopoietin-2 (Ang2) is a naturally occurring antagonist of angiopoietin-1 (Ang1) that competes for binding to the Tie2 receptor and blocks Ang1-induced Tie2 autophosphorylation during vasculogenesis. Using the polymerase chain reaction, we isolated a cDNA encoding a novel shorter form of Ang2 from human umbilical vein endothelial cell cDNA and have designated it angiopoietin-2(443) (Ang2(443)), because it contains 443 amino acids. Part of the coiled-coil domain (amino acids 96-148) is absent in Ang2(443) because of alternative splicing of the gene. Like Ang2, recombinant Ang2(443) expressed in COS-7 cells is secreted as a glycosylated homodimeric protein. Recombinant Ang2(443) binds to the Tie2 receptor but does not induce Tie2 phosphorylation. Pre-occupation of Ang2(443) on Tie2 inhibits Ang1 or Ang2 binding and inhibits Ang1-induced phosphorylation. Expression of Ang2(443) mRNA is detectable in primary endothelial cells, several nonendothelial tumor cell lines, and primary tumor tissues. Interestingly, two cervical carcinoma cell lines express relatively moderate levels of Ang2(443) mRNA and protein. Macrophages express mainly Ang2 mRNA, but the expression of Ang2(443) mRNA is temporarily up-regulated during macrophage differentiation. These results suggest that Ang2(443) is a functional antagonist of Ang1 and could be an important regulator of angiogenesis during some tumorigenic and inflammatory processes.  相似文献   

3.
RNA‐binding properties of nucleolin play a fundamental role in regulating cell growth and proliferation. We have previously shown that nucleolin plays an important regulatory role in the phenotypic transformation of vascular smooth muscle cells (VSMCs) induced by angiotensin II (Ang II). In the present study, we aimed to investigate the molecular mechanism of nucleolin‐mediated phenotypic transformation of VSMCs induced by Ang II. Epidermal growth factor (EGF) and platelet‐derived growth factor (PDGF) inhibitors were used to observe the effect of Ang II on phenotypic transformation of VSMCs. The regulatory role of nucleolin in the phenotypic transformation of VSMCs was identified by nucleolin gene mutation, gene overexpression and RNA interference technology. Moreover, we elucidated the molecular mechanism underlying the regulatory effect of nucleolin on phenotypic transformation of VSMCs. EGF and PDGF‐BB played an important role in the phenotypic transformation of VSMCs induced by Ang II. Nucleolin exerted a positive regulatory effect on the expression and secretion of EGF and PDGF‐BB. In addition, nucleolin could bind to the 5′ untranslated region (UTR) of EGF and PDGF‐BB mRNA, and such binding up‐regulated the stability and expression of EGF and PDGF‐BB mRNA, promoting Ang II‐induced phenotypic transformation of VSMCs.  相似文献   

4.
5.
The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This receptor interacts with the related protein Tie1 on the cell surface, and Tie1 inhibits Ang1 signalling through Tie2. The responsiveness of endothelium to Ang1 is determined by the relative levels of Tie2 and the inhibitory co-receptor Tie1 in the cells. Tie1 undergoes regulated ectodomain cleavage which is stimulated by a range of factors including VEGF (vascular endothelial growth factor), inflammatory cytokines and changes in shear stress. Ectodomain cleavage of Tie1 relieves inhibition of Tie2 and enhances Ang1 signalling. This mechanism regulates Ang1 signalling without requiring changes in the level of the ligand and allows Ang1 signalling to be co-ordinated with other signals in the cellular environment. Regulation of signalling at the level of receptor responsiveness may be an important adaptation in systems in which an activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

6.
7.
Zhu JH  Liu Z  Huang ZY  Li S 《生理学报》2005,57(5):587-592
本文研究血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)对自发性高血压大鼠(spontaneously hypertensive rat,SHR)和Wistar- Kyoto(WKY)大鼠血管平滑肌细胞(vascular smooth muscle cells.VSMCs)细胞外信号调节激酶(extracellular signal-regulated pro- tein kinases,ERKs)信号途径的影响。体外培养SHR和WKY大鼠的VSMCs,先在培养基中加入终浓度为1×105mmol/L 的缬沙坦或1×105mmol/L的PD98059或不加药物,再给予1×107mmol/L的Ang Ⅱ刺激24 h后收集细胞,以无血清培养基 培养的VSMCs作对照。用免疫沉淀法测定ERK活性;用Western-blot方法检测总ERK(total ERK,t-ERK)、磷酸化ERK (phosphorylated-ERK,p-ERK)及丝裂素活化蛋白激酶磷酸酶-1(mitogen-activated protem kinases phosphatase-1,MKP-1)水 平;用RT-PCR法半定量测定MKP-1 mRNA的含量。结果显示:(1)SHR和WKY大鼠Ang Ⅱ刺激组VSMCs中ERK活 性、p-ERK、MKP-1及MKP-1 mRNA水平均明显高于对照组(P<0.05);SHR和WKY大鼠Ang Ⅱ+缬沙坦组和Ang Ⅱ +PD98059组的上述指标与对照组比较均无显著性差异。(2)SHR大鼠VSMCs中ERK活性、P-ERK、MKP-1及MKP-1 mRNA均显著高于相同干预的WKY大鼠(P<0.01)。(3)SHR和WKY大鼠之间以及对照组、Ang Ⅱ刺激组、Ang Ⅱ+缬沙 坦组和Ang Ⅱ+PD98059组间VSMCs中t-ERK水平均无显著性差异。以上结果表明,Ang Ⅱ可能主要通过其1型(Ang Ⅱ type 1,AT)受体激活SHR和WKY大鼠VSMCs中ERK途径,增加ERK活性和p-ERK蛋白水平,继而引起MKP-1及 MKP-1 mRNA水平升高。  相似文献   

8.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

9.
Although Angiopoietin (Ang) 2 has been shown to function as a Tie2 antagonist in vascular endothelial cells, several recent studies on Ang2-deficient mice have reported that, like Ang1, Ang2 acts as a Tie2 agonist during in vivo lymphangiogenesis. However, the mechanism governing the Tie2 agonistic activity of Ang2 in lymphatic endothelial cells has not been investigated. We found that both Ang1 and Ang2 enhanced the in vitro angiogenic and anti-apoptotic activities of human lymphatic endothelial cells (HLECs) through the Tie2/Akt signaling pathway, while only Ang1 elicited such effects in human umbilical vein vascular endothelial cells (HUVECs). This Tie2-agonistic effect of Ang2 in HLECs resulted from low levels of physical association between Tie2 and Tie1 receptors due to a reduced level of Tie1 expression in HLECs compared to HUVECs. Overexpression of Tie1 and the resulting increase in formation of Tie1/Tie2 heterocomplexes in HLECs completely abolished Ang2-mediated Tie2 activation and the subsequent cellular responses, but did not alter the Ang1 function. This inhibitory role of Tie1 in Ang2-induced Tie2 activation was also confirmed in non-endothelial cells with adenovirus-mediated ectopic expression of Tie1 and/or Tie2. To our knowledge, this study is the first to describe how Ang2 acts as a Tie2 agonist in HLECs. Our results suggest that the expression level of Tie1 and its physical interaction with Tie2 defines whether Ang2 functions as a Tie2 agonist or antagonist, thereby determining the context-dependent differential endothelial sensitivity to Ang2.  相似文献   

10.
Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis.  相似文献   

11.
Sun JJ  Kim HJ  Seo HG  Lee JH  Yun-Choi HS  Chang KC 《Life sciences》2008,82(11-12):600-607
Overexpression of the gene for heme oxygenase (HO)-1 leads to a reduction in pressor responsiveness to angiotensin II (Ang II) in experimental animals. Using rat vascular smooth muscle cells (VSMCs), we tested whether YS 49 [1-(alpha-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] inhibits Ang II-stimulated proliferation of VSMCs via induction of HO-1. YS 49 induced HO-1 protein production in a dose-and time-dependent manner in VSMCs. Treatment with YS 49 significantly and dose-dependently inhibited Ang II-induced VSMC proliferation, ROS production, and phosphorylation of JNK, but not P38 MAP kinase or ERK1/2. The antiproliferation effect of YS 49 was reversed by pretreatment with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), or with hemoglobin, a carbon monoxide (CO) scavenger. Similarly, VSMC proliferation, ROS production and phosphorylation of JNK by Ang II were significantly inhibited in VSMCs transfected with the HO-1 gene. Thus, HO-1 and the HO-1 product CO play, at least in part, a crucial role in Ang II-stimulated VSMC proliferation through the regulation of ROS production and JNK phosphorylation. Therefore, YS 49 has potential as a therapeutic strategy for the pathogenesis of Ang II-related vascular diseases such as hypertension and atherosclerosis, via the induction of HO-1 gene activity.  相似文献   

12.
13.
Modulation of Tie2 receptor activity by angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. The role of the angiopoietin (Ang) and Tie system in myocardial infarction is not well understood. To investigate the participation of the Ang/Tie in myocardial infarction, adult Sprague-Dawley rats with ligation of the left anterior descending coronary artery to induce myocardial infarction were studied. Ang1, Ang2, Tie1, and Tie2 were measured immediately after ligation of the coronary artery, and at 6 h, 1 and 3 days, and 1, 2, 3 and 4 weeks after ligation by Northern blotting, Western blotting, and immunohistochemical staining. Ang2 mRNA significantly increased from 2 weeks (2.1-fold) to 4 weeks (2.9-fold) after the infarction in the left ventricular free wall. Tie2 mRNA increased significantly from 1 week (2.1-fold) to 4 weeks (3.8-fold) after the infarction. Ang2 protein also significantly increased from 3 days (1.9-fold) to 4 weeks (3-fold) after the infarction in the left ventricular free wall. Tie2 protein increased 2.4-fold at 3 weeks and 2.8-fold at 4 weeks after the infarction. Neither Ang1 nor Tie1 mRNA or protein showed any significant change at any time point after the infarction. The ratio of Ang2/Ang1 mRNA and protein in the study group was higher than that in the control group. Ang2 and Tie2 expression in nonischemic myocardium showed no significant change. Immunohistochemical study also showed increased immunoreactivity of Ang2 and Tie2 at the infarct border. In conclusion, Ang2 and Tie2 expressions significantly increased both spatial and temporal patterns after myocardial infarction in the rat ventricular myocardium, while Ang1 and Tie1 receptor expression did not.  相似文献   

14.
Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10-7 mol/L) in the absence and presence of cytochalasin B (10-6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 micromol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.  相似文献   

15.
16.
Zhao Y  Lv M  Lin H  Hong Y  Yang F  Sun Y  Guo Y  Cui Y  Li S  Gao Y 《IUBMB life》2012,64(2):194-202
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein.  相似文献   

17.
18.
Angiopoietin-3, a novel member of the angiopoietin family   总被引:11,自引:0,他引:11  
Nishimura M  Miki T  Yashima R  Yokoi N  Yano H  Sato Y  Seino S 《FEBS letters》1999,448(2-3):254-256
A cDNA clone encoding angiopoietin-3 protein (Ang3), a novel member of the angiopoietin family, was identified. Ang3 cDNA was cloned from a human aorta cDNA library. Ang3 is a 503 amino acid protein having 45.1% and 44.7% identity with human angiopoietin-1 and human angiopoietin-2, respectively. Ang3 mRNA is expressed in lung and cultured human umbilical vein endothelial cells (HUVECs). Ang3 mRNA expression in HUVECs was slightly decreased by vascular endothelial cell growth factor treatment, suggesting that the regulation of Ang3 mRNA expression is different from that of Ang2.  相似文献   

19.
The tyrosine kinase receptor Tie2 is expressed on endothelial cells, and together with its ligand angiopoietin-1 (Ang1), is important for angiogenesis and vascular stability. Upon activation by Ang1, Tie2 is rapidly internalized and degraded, a mechanism most likely necessary to attenuate receptor activity. Using immunogold electron microscopy, we show that on the surface of endothelial cells, Tie2 is arranged in variably sized clusters containing dimers and higher order oligomers. Clusters of Tie2 were expressed on the apical and basolateral plasma membranes, and on the tips of microvilli. Upon activation by Ang1, Tie2 co-localized with the clathrin heavy chain at the apical and basolateral plasma membranes and within endothelial cells indicating that Tie2 internalizes through clathrin-coated pits. Inhibiting cellular endocytosis by depleting cellular potassium or by acidifying the cytosol blocked the internalization of Tie2 in response to Ang1. Our results suggest that one pathway mediating the internalization of Tie2 in response to Ang1 is through clathrin-coated pits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received oral administration of telmisartan (5 or 10 mg/kg; daily) or saline for 10 weeks. Compared with Wistar–Kyoto (WKY) rats, there were marked increases in systolic blood pressure and profilin-1 expression and reduced ACE2 and peroxisome proliferator activated receptor-γ (PPARγ) levels in aorta of SHR, associated with elevated extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) phosphorylation signaling and aortic hypertrophy characterized with increased media thickness, which were strikingly reversed by telmisartan. In cultured human umbilical artery smooth muscle cells (HUASMCs), Ang II induced a dose-dependent increase in profilin-1 expression, along with decreased ACE2 protein expression and elevated ERK1/2 and JNK phosphorylation. In addition, blockade of ERK1/2 or JNK by either specific inhibitor was able to abolish Ang II-induced ACE2 downregulation and profilin-1 upregulation in HUASMCs. Importantly, treatment with telmisartan (1 or 10 μM) or recombinant human ACE2 (2 mg/ml) largely ameliorated Ang II-induced profilin-1 expression and ERK1/2 and JNK phosphorylation and augmented PPARγ ?expression in the cultured HUASMCs. In conclusion, telmisartan treatment attenuates vascular hypertrophy in SHR by the modulation of ACE2 and profilin-1 expression with a marked reversal of ERK1/2 and JNK phosphorylation signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号