首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.

Methodology/Principal Findings

In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress.

Conclusions

Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells.  相似文献   

2.
Mitochondria are double membrane organelles involved in various key cellular processes. Governed by dedicated protein machinery, mitochondria move and continuously fuse and divide. These “mitochondrial dynamics” are bi-directionally linked to mitochondrial and cell functional state in space and time. Due to the action of the electron transport chain (ETC), the mitochondrial inner membrane displays a inside-negative membrane potential (Δψ). The latter is considered a functional readout of mitochondrial “health” and required to sustain normal mitochondrial ATP production and mitochondrial fusion. During the last decade, live-cell microscopy strategies were developed for simultaneous quantification of Δψ and mitochondrial morphology. This revealed that ETC dysfunction, changes in Δψ and aberrations in mitochondrial structure often occur in parallel, suggesting they are linked potential targets for therapeutic intervention. Here we discuss how combining high-content and high-throughput strategies can be used for analysis of genetic and/or drug-induced effects at the level of individual organelles, cells and cell populations.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

3.
NADH:ubiquinone dehydrogenase (complex I) deficiency can be diagnosed from cultured skin fibroblasts using a number of methods, the most commonly used is a linked assay of rotenone-sensitive complex I + III activity (NADH:cytochrome c reductase). Because of interference from diaphorases, this method requires either the isolation of mitochondria (or at least partial purification). For a suitable mitochondrial preparation from skin fibroblasts, this requires the culturing of 4-20 individual 100mm tissue culture plates, depending on the purity of preparation required. These assays are therefore time-consuming, and do not assist in a rapid diagnosis. There is also no clear demarkation between the normal range of activity and the deficient range since mild mutations can produce only partial decreases in complex I activity. Equally, assaying patient cells that do not have a specific deficiency may prove to be time-wasting in the process of providing a quick, definitive clinical diagnosis. The lactate/pyruvate ratio of fibroblasts has been used to indicate the extent of respiratory chain involvement, as cells with a metabolic defect usually produce more lactate with an increased ratio from 25:1 to much higher values [Methods Enzymol. 264 (1996) 454]. This measurement may not always be conclusive, as the values can fluctuate as a result of culture medium, cell passage number, cell number and viability. In this report, we evaluate the use of pyruvate oxidation measurements from whole cells prepared from a single plate of cultured fibroblasts as an alternative to lactate/pyruvate ratios, or other methods both direct and indirect as indicators of the extent of respiratory chain involvement and the possibility of a defect within complex I. Whole cell 2-14C pyruvate oxidation appears to indicate the presence of a complex I defect in patients compared to normal controls more reliably than L/P ratios, but this has some puzzling exceptions.  相似文献   

4.
BACKGROUND: Cytosolic pH (pHi) changes are critical in cellular response to diverse stimuli, including cell survival and death signaling. The potential drawback in flow-based analysis is the inability to simultaneously visualize the cells during pHi measurements. Here, the suitability of laser scanning cytometer (LSC) in pHi measurement was investigated. AIM: Using the two extensively reported pH-sensitive fluorescent probes, 2,7-bis(2-Carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester, we evaluated the potential of automated LSC as a platform for simultaneous determination of pHi and cell morphology. The effect of a variety of buffer systems-commonly employed for pHi measurements-on cell morphology before pH clamping with the ionophore, nigericin, was also assessed. METHODS: Measurement of cytosolic pH was performed using pH-sensitive fluorescent probes BCECF-AM and SNARF-1. pH clamping was carried out using nigericin and samples were analyzed on the LSC or CyAn ADP Flow Cytometer. RESULTS: The pHi clamping conditions were optimized as 140 mM potassium and 10 microM nigericin. The suitable buffers used for pH clamping: 140 mM KCl, 1 mM MgCl2, 2 mM CaCl(2).2H2O, 5 mM glucose, 20 mM MES and 140 mM KCl, 1 mM MgCl2, 2 mM CaCl(2).2H2O, 5 mM glucose, and 20 mM Tris. Results obtained with the LSC strongly correlated with those obtained by flow cytometry. CONCLUSION: We report here that LSC is an excellent and highly reproducible platform for pHi determination, and provides the added advantage of simultaneous imaging of cells before, during, and after pH measurements.  相似文献   

5.
6.
7.
8.
A quantitative cytochemical method for the measurement of beta-galactosidase activity in cultured human skin fibroblasts has been developed using 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside as the indigogenic substrate. The method relies upon the oxidation of the primary reaction product by ferro/ferricyanide during which an insoluble indigo dye is generated as the final reaction product. The reaction was linear with time up to 60 min using the final cytochemical standard procedure. The enzyme showed maximum activity at pH 4.0 to 4.1. The concentration optima of indigogenic substrate and potassium ferro/ferricyanide were 3.67 mM and 3.13 mM respectively. The presence of sodium chloride activated beta-galactosidase up to 100 mM, but was inhibitory above that concentration. The enzyme was inhibited by N-ethylmaleimide, N-acetyl-D-galactosamine and heparin. The enzyme molecules were shown to diffuse out of the cells using media without a suitable inert colloid stabilizer. However, diffusion was completely prevented by using polyvinyl alcohol (PVA) grade G18/140. Air-drying of cells was essential to make the cell membrane permeabel to the substrate and, thereby, to avoid a pronounced lag phase. However, in a biochemical analysis, air-drying itself caused a decrease in enzyme activity to 43% of the control. Even after air-drying lysosomal latency could still be demonstrated by using PVA grade G04/140. Control persons, one carrier of and two patients with beta-galactosidase deficiency were easily identified as belonging to three separate groups by using the cytochemical assay. It is proposed that the quantitative cytochemical approach may also be applied to cultured human amniotic fluid cells or chorion biopsies giving a rapid prenatal diagnosis of beta-galactosidase deficiency due to the small number of cells needed in the analysis.  相似文献   

9.
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by α2 integrins, whereas motility on collagen III involves α1 integrins. Other integrins (α10 or α11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium. This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund, HEF-(2000-05)-04.  相似文献   

10.
Respiratory chain complex I (NADH:ubiquinone oxidoreductase) deficiency is one of the most frequent causes of mitochondrial disease in humans. The activity of this complex can be confidently measured in most tissue samples, but not in cultured skin fibroblasts or circulating lymphocytes. Highly contaminating non-mitochondrial NADH-quinone oxidoreductase activity in fibroblasts and the limited access of substrates to complex I in lymphocytes hinder its measurement in permeabilized cells. Complex I assay in these cells requires the isolation of mitochondria, which in turn necessitates large quantities of cells and is not feasible when studying circulating lymphocytes. Here we report a simple method to measure complex I activity in a minute amount of either cell type. The procedure strongly reduces contaminating NADH:quinone oxidoreductase activity and permits measuring high rates of rotenone-sensitive complex I activity thanks to effective cell permeabilization.  相似文献   

11.
12.
13.
A simplified theory of image formation in phase contrast microscopy is presented. It is shown that the phase shift induced in light (related to the refractive index) by the observed object can be reconstructed, point by point, from the phase-contrast digitally sampled image through an appropriate algorithm. This allows one to make quantitative observations on unstained, living cells.  相似文献   

14.
Although glutamine (Gln) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Intermediates of Gln interconversion: glutamate (Glu) and pyrroline-5-carboxylate (P5C) stimulate collagen biosynthesis in cultured cells but evoke different maxima of collagen biosynthesis stimulating activity at different times of incubation. P5C was found to be the most potent stimulator of collagen biosynthesis after 6 h of incubation (approx. three-fold increase); after 12 h, it induced increase in collagen biosynthesis to 260%, while at 24 h, the process was decreased to approximately 80% of control values. Glu induced increase in collagen biosynthesis to approximately 180%, 400% and 120% of control values, after 6, 12 and 24 h, respectively, suggesting that after 12 h of incubation, Glu was the most potent stimulator of collagen biosynthesis. Glu was also the most potent stimulator of type I procollagen expression at this time. After 6, 12 and 24 h incubation, Gln induced collagen biosynthesis to approximately 112, 115 and 230% of control values, respectively. Since prolidase is known to be involved in collagen metabolism, the enzyme activity assay was performed in fibroblasts cultured in the presence of Gln, Glu and P5C. While Gln and Glu required 24 h for maximal stimulation of prolidase activity, P5C induced it after 6-12 h. The data suggest that P5C induced collagen biosynthesis and prolidase activity in a shorter time than Gln and Glu. We considered that P5C directly stimulates the processes, while Gln acts through its intermediate-P5C. Reduction of P5C to proline is coupled to the conversion of glucose-6-phosphate (G6P) to 6-phospho-gluconate, catalyzed by G6P dehydrogenase. We have found that dehydroepiandrosterone (DHEA), a potent inhibitor of G6P dehydrogenase, inhibited a stimulatory effect of P5C on collagen synthesis, expression of type I collagen and prolidase activity. Our results postulate a potential mechanism of glutamine-induced collagen biosynthesis through its intermediate - P5C. P5C-dependent activation of nucleotide biosynthesis, prolidase activity and P5C conversion into proline may contribute to the stimulation of collagen biosynthesis.  相似文献   

15.
A simplified theory of image formation in phase contrast microscopy is presented. It is shown that the phase shift induced in light (related to the refractive index) by the observed object can be reconstructed, point by point, from the phase-contrast digitally sampled image through an appropriate algorithm. This allows one to make quantitative observations on unstained, living cells.  相似文献   

16.
17.
Abnormal proliferation of mitochondria generally occurs in muscle of aged individuals and patients with mitochondrial myopathy. An increase in the mitochondrial DNA (mtDNA) copy number has also been observed in aging human tissues. However, the molecular mechanism underlying the increase in mitochondrial mass and mtDNA is still unclear. In a previous study, we demonstrated that sublethal levels of oxidative stress caused an increase in mitochondrial mass in human lung cells. In this communication, we report our recent findings that the mitochondrial mass in human lung fibroblasts (MRC-5) in a later proliferation stage is significantly increased compared to that in the early stages of proliferation. The extent of the increase in mitochondrial mass in the senescent cells was similar to that in cells in the early stages of proliferation that had been treated with low concentrations ( 180 µM) of hydrogen peroxide (H2O2). Moreover, we found that the rate of reactive oxygen species (ROS) production was higher in cells in the later proliferation stage compared to cells in the early proliferation stages. A similar phenomenon was also observed in cells in the early proliferation stages under low levels of oxidative stress. On the other hand, the mRNA levels of many nuclear DNA-encoded proteins involved in mitochondrial biogenesis, particularly nuclear respiratory factor-1, were found to increase in cells in later proliferation stages and in cells in early proliferation stages that had been treated with 180 µM H2O2. Interestingly, the increase in mitochondrial mass in the cells under oxidative stress could be repressed by treatment with cycloheximide orm-chlorocarbonyl cyanide phenylhydrazone but not by chloramphenicol. Furthermore, the mitochondrial mass of mtDNA-less ° cells was also significantly increased by exposure to low concentrations (e.g. 180 µM) of H2O2. These results suggest that the increase in mitochondrial mass in replicative senescent cells may result from an increase in ROS production, and that it is dependent on both de novo synthesis of nuclear DNA-encoded proteins and their import into mitochondria, dictated by the membrane potential of mitochondria.  相似文献   

18.
19.
The in vitro degradation of [35S]chondroitin sulfate was investigated in human fibroblasts and rat liver. In rat liver, preparations of chondroitin sulfate were shown to be degraded by the concerted action of endoglycosidase and exoglycosidases. However, with human skin fibroblast preparations, hyaluronidase activity was not detected and chondroitin sulfate was degraded by exoglycosidase action.  相似文献   

20.
Background: Quantitative analysis of mitochondrial morphology plays important roles in studies of mitochondrial biology. The analysis depends critically on segmentation of mitochondria, the image analysis process of extracting mitochondrial morphology from images. The main goal of this study is to characterize the performance of convolutional neural networks (CNNs) in segmentation of mitochondria from fluorescence microscopy images. Recently, CNNs have achieved remarkable success in challenging image segmentation tasks in several disciplines. So far, however, our knowledge of their performance in segmenting biological images remains limited. In particular, we know little about their robustness, which defines their capability of segmenting biological images of different conditions, and their sensitivity, which defines their capability of detecting subtle morphological changes of biological objects. Methods: We have developed a method that uses realistic synthetic images of different conditions to characterize the robustness and sensitivity of CNNs in segmentation of mitochondria. Using this method, we compared performance of two widely adopted CNNs: the fully convolutional network (FCN) and the U-Net. We further compared the two networks against the adaptive active-mask (AAM) algorithm, a representative of high-performance conventional segmentation algorithms. Results: The FCN and the U-Net consistently outperformed the AAM in accuracy, robustness, and sensitivity, often by a significant margin. The U-Net provided overall the best performance. Conclusions: Our study demonstrates superior performance of the U-Net and the FCN in segmentation of mitochondria. It also provides quantitative measurements of the robustness and sensitivity of these networks that are essential to their applications in quantitative analysis of mitochondrial morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号