首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 Å), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 Å) identified the substrate-binding site. A defined S1′ pocket, but no S2′ or S3′ substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2′ and S3′ binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2′and P3′ positions of a formylated peptide substrate to turnover.  相似文献   

2.
The human mitochondrial peptide deformylase (HsPDF) provides a potential new target for broadly acting antiproliferative agents. To identify novel nonpeptidomimetic and nonhydroxamic acid-based inhibitors of HsPDF, the authors have developed a high-throughput screening (HTS) strategy using a fluorescence polarization (FP)-based binding assay as the primary assay for screening chemical libraries, followed by an enzymatic-based assay to confirm hits, prior to characterization of their antiproliferative activity against established tumor cell lines. The authors present the results and performance of the established strategy tested in a pilot screen of 2880 compounds and the identification of the 1st inhibitors. Two common scaffolds were identified within the hits. Furthermore, cytotoxicity studies revealed that most of the confirmed hits have antiproliferative activity. These findings demonstrate that the designed strategy can identify novel functional inhibitors and provide a powerful alternative to the use of functional assays in HTS and support the hypothesis that HsPDF inhibitors may constitute a new class of antiproliferative agent.  相似文献   

3.
Nguyen KT  Hu X  Colton C  Chakrabarti R  Zhu MX  Pei D 《Biochemistry》2003,42(33):9952-9958
Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Deformylation was for a long time thought to be a feature unique to the prokaryotes, making PDF an attractive target for designing novel antibiotics. However, recent genomic sequencing has revealed PDF-like sequences in many eukaryotes, including man. In this work, the cDNA encoding Homo sapiens PDF (HsPDF) has been cloned and a truncated form that lacks the N-terminal 58-amino-acid targeting sequence was overexpressed in Escherichia coli. The recombinant, Co(2+)-substituted protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is strongly inhibited by specific PDF inhibitors. Expression of HsPDF fused to the enhanced green fluorescence protein in human embryonic kidney cells revealed its location in the mitochondrion. However, HsPDF is much less active than its bacterial counterpart, providing a possible explanation for the apparent lack of deformylation in the mammalian mitochondria. The lower catalytic activity is at least partially due to mutation of a highly conserved residue (Leu-91 in E. coli PDF) in mammalian PDF. PDF inhibitors had no detectable effect on two different human cell lines. These results suggest that HsPDF is likely an evolutional remnant without any functional role in protein formylation/deformylation and validates PDF as an excellent target for antibacterial drug design.  相似文献   

4.
5.
Selective inhibitors of human peptide deformylase (HsPDF) are predicted to constitute a new class of antitumor agents. We report the identification of benzofuran-4,5-diones as the first known selective HsPDF inhibitors and we describe their selectivity profile in a panel of metalloproteases. We characterize their structure-activity relationships for antitumor activity in a panel of cancer cell lines, and we assess their in vivo efficacy in a mouse xenograft model. Our results demonstrate that selective HsPDF inhibitors based on the benzofuran-4,5-dione scaffold constitute a novel class of antitumor agents that are potent in vitro and in vivo.  相似文献   

6.
Dedicated machinery for N-terminal methionine excision (NME) was recently identified in plant organelles and shown to be essential in plastids. We report here the existence of mitochondrial NME in mammals, as shown by the identification of cDNAs encoding specific peptide deformylases (PDFs) and new methionine aminopeptidases (MAP1D). We cloned the two full-length human cDNAs and showed that the N-terminal domains of the encoded enzymes were specifically involved in targeting to mitochondria. In contrast to mitochondrial MAP1D, the human PDF sequence differed from that of known PDFs in several key features. We characterized the human PDF fully in vivo and in vitro. Comparison of the processed human enzyme with the plant mitochondrial PDF1A, to which it is phylogenetically related, showed that the human enzyme had an extra N-terminal domain involved in both mitochondrial targeting and enzyme stability. Mammalian PDFs also display non-random substitutions in the conserved motifs important for activity. Human PDF site-directed mutagenesis variants were studied and compared with the corresponding plant PDF1A variants. We found that amino acid substitutions in human PDF specifically altered its catalytic site, resulting in an enzyme intermediate between bacterial PDF1Bs and plant PDF1As. Because (i) human PDF was found to be active both in vitro and in vivo, (ii) the entire machinery is conserved and expressed in most animals, (iii) the mitochondrial genome expresses substrates for these enzymes, and (iv) mRNA synthesis is regulated, we conclude that animal mitochondria have a functional NME machinery that can be regulated.  相似文献   

7.
Proteases play fundamentally important roles in normal physiology and disease pathology. Methods for detection of active proteolysis may greatly aid in the diagnosis of disease progression, and suggest modes of therapeutic intervention. Most assays for proteolytic potential are limited by a lack of specificity and/or quantification. We have developed a solid-phase activity assay for members of the matrix metalloproteinase (MMP) family that is specific and can be used to quantify active enzyme concentration. The assay has two principal components: a capture antibody that immobilizes the MMP without perturbing the enzyme active site, and a fluorescence resonance energy transfer substrate for monitoring proteolysis at low enzyme concentrations. The assay was standardized for MMP-1, MMP-3, MMP-13, and MMP-14. The efficiency of the assay was found to be critically dependent upon the quality of the antibodies, the use of substrates exhibiting high specific activities for the enzymes, and enzyme samples that are fresh. The assay was applied to studies of constitutive and induced MMP activity in human melanoma cells. Analysis of several melanoma cell lines, and comparison with prior studies, correlated higher constitutive MMP-13 activity with higher levels of the cell surface receptor CD44. Ligands to two different melanoma cell surface receptors (the alpha2beta1 integrin or CD44) were found to induce different proteolytic profiles, suggesting that the extracellular matrix can modulate melanoma invasion. Overall, the solid-phase MMP activity assay was found to be valuable for analysis of protease activity in cellular environments. The solid-phase assay is suitably flexible to allow studies of virtually any proteolytic enzyme for which appropriate substrates and antibodies are available.  相似文献   

8.
Legionella pneumophila is a gram-negative facultative intracellular human pathogen that can cause fatal Legionnaires' disease. Polypeptide deformylase (PDF) is a novel broad-spectrum antibacterial target, and reports of inhibitors of PDF with potent activities against L. pneumophila have been published previously. Here, we report the identification of not one but three putative pdf genes, pdfA, pdfB, and pdfC, in the complete genome sequences of three strains of L. pneumophila. Phylogenetic analysis showed that L. pneumophila PdfA is most closely related to the commonly known gamma-proteobacterial PDFs encoded by the gene def. PdfB and PdfC are more divergent and do not cluster with any specific bacterial or eukaryotic PDF. All three putative pdf genes from L. pneumophila strain Philadelphia 1 have been cloned, and their encoded products have been overexpressed in Escherichia coli and purified. Enzymatic characterization shows that the purified PDFs with Ni2+ substituted are catalytically active and able to remove the N-formyl group from several synthetic polypeptides, although they appear to have different substrate specificities. Surprisingly, while PdfA and PdfB with Zn2+ substituted are much less active than the Ni2+ forms of each enzyme, PdfC with Zn2+ substituted was as active as the Ni2+ form for the fMA substrate and exhibited substrate specificity different from that of Ni2+ PdfC. Furthermore, the catalytic activities of these enzymes are potently inhibited by a known small-molecule PDF inhibitor, BB-3497, which also inhibits the extracellular growth of L. pneumophila. These results indicate that even though L. pneumophila has three PDFs, they can be effectively inhibited by PDF inhibitors which can, therefore, have potent anti-L. pneumophila activity.  相似文献   

9.
Unexpected peptide deformylase (PDF) genes were recently retrieved in numerous marine phage genomes. While various hypotheses dealing with the occurrence of these intriguing sequences have been made, no further characterization and functional studies have been described thus far. In this study, we characterize the bacteriophage Vp16 PDF enzyme, as representative member of the newly identified C-terminally truncated viral PDFs. We show here that conditions classically used for bacterial PDFs lead to an enzyme exhibiting weak activity. Nonetheless, our integrated biophysical and biochemical approaches reveal specific effects of pH and metals on Vp16 PDF stability and activity. A novel purification protocol taking in account these data allowed strong improvement of Vp16 PDF specific activity to values similar to those of bacterial PDFs. We next show that Vp16 PDF is as sensitive to the natural inhibitor compound of PDFs, actinonin, as bacterial PDFs. Comparison of the 3D structures of Vp16 and E. coli PDFs bound to actinonin also reveals that both PDFs display identical substrate binding mode. We conclude that bacteriophage Vp16 PDF protein has functional peptide deformylase activity and we suggest that encoded phage PDFs might be important for viral fitness.  相似文献   

10.
Deformylases are metalloproteases in bacteria, plants, and humans that remove the N-formyl-methionine off peptides in vitro. The human homolog of peptide deformylase (HsPDF) resides in the mitochondria, along with its putative formylated substrates; however, the cellular function of HsPDF remains elusive. Here we report on the function of HsPDF in mitochondrial translation and oxidative phosphorylation complex biogenesis. Functional HsPDF appears to be necessary for the accumulation of mitochondrial DNA-encoded proteins and assembly of new respiratory complexes containing these proteins. Consequently, inhibition of HsPDF reduces respiratory function and cellular ATP levels, causing dependence on aerobic glycolysis for cell survival. A series of structurally different HsPDF inhibitors and control peptidase inhibitors confirmed that inhibition of HsPDF decreases mtDNA-encoded protein accumulation. Therefore, HsPDF appears to have a role in maintenance of mitochondrial respiratory function, and this function is analogous to that of chloroplast PDF.The human mitochondrial protein peptide deformylase, HsPDF, is a metalloprotease that removes the formyl moiety on the methionine of N-formyl-methionine peptide substrates in an enzymatic assay (24, 35). Despite the slow kinetic properties of HsPDF in an in vitro deformylation assay (24, 29, 35), we have shown that small interfering RNA (siRNA) interference of HsPDF decreases human cancer cell proliferation. Similarly, pharmacologic inhibition with the PDF antibiotic inhibitor actinonin and its analogs results in mitochondrial membrane depolarization and promotes cell death or proliferation arrest in a wide variety of cancer cell lines (18, 25). However, the cellular function of HsPDF remains elusive, and others have proposed that it has none (29). In bacteria, deformylation of nascent peptides is necessary for removal of the N-terminal methionine (36) and posttranslational processing of at least a subset of proteins that contribute to cell growth and viability (28). Prokaryotic PDF thus fulfills a role in cotranslational processing (7) and in protein degradation (41).In mammals, N-terminal formylation of proteins is only known to occur during mitochondrial translation initiation, as in prokaryotic protein translation (6). In contrast to bacteria, where the entire proteome is formylated for translation initiation, formylation in eukaryotes is limited to the 13 mitochondrial DNA (mtDNA)-encoded proteins. Formylation is important for mitochondrial translation, because formyl-Met-tRNA, but not Met-tRNA, is recognized by initiation factor 2 as the initiator tRNA (26, 37, 39). Therefore, the participation of HsPDF in protein post- or cotranslational processing can be narrowed down to these mitochondrial translation products.Despite the current understanding of the function of formyl-methionine in the initiation of protein synthesis in mammalian mitochondria (38, 39), the functional relevance of the downstream processing of nascent mitochondrial translation products has remained unexplored. Furthermore, it has been assumed that human mitochondria-encoded proteins, like those of bovine origin, are generally not deformylated after synthesis (45).The mammalian mitochondrial genome-encoded proteins are all subunits of four of the five oxidative phosphorylation respiratory chain enzyme complexes (I, III, IV, and V) (2, 40, 42). Respiratory complexes are comprised of multiple proteins. With the exception of complex II, which is comprised entirely of nuclear DNA-encoded subunits, all other complexes include both nuclear and mitochondrial DNA-encoded proteins. Synthesis of key mtDNA-encoded protein subunits, and the assembly of these proteins with multiple nuclear-encoded subunits within the mitochondria, is necessary for the function of each individual complex (16, 30, 44). Moreover, a functional interdependence among stably assembled respiratory complexes has been demonstrated (1). Mutations in human mtDNA that affect protein-coding regions or nuclear DNA mutations that affect expression of respiratory complex subunits cause disease (13), including Parkinson''s disease, for example, in which decreased respiratory function and compromised cell viability have been demonstrated (5, 21, 23). Therefore, the importance of properly assembled mitochondrial respiratory complexes suggests that their disruption, by inhibition of mtDNA-encoded protein processing, could have significant effects on cellular function.We hypothesized that HsPDF-mediated processing of mtDNA-encoded proteins is necessary for proper function of the respiratory chain complexes. To determine how the human deformylase activity contributes to cellular function, we used pharmacologic inhibition of HsPDF activity with the hydroxamic acid peptidomimetic inhibitor of PDF, actinonin, and confirmed our findings with a variety of other structurally different inhibitors. PDF has been shown to be a target of actinonin in bacteria (9), human cells (24), and plants (17).Here we show that inhibition of HsPDF function in mitochondria of human cell lines reduces mtDNA-encoded protein accumulation, new respiratory complex assembly, and energy production by the mitochondria. Aerobic glycolysis-dependent cell survival ensues upon disruption of HsPDF function. Therefore, HsPDF appears to fulfill a function in the mitochondria and to have a role in mtDNA-encoded protein-containing oxidative phosphorylation (OXPHOS) complex biogenesis.  相似文献   

11.
Phosphorylation is a potent mechanism regulating the activity of many intracellular enzymes. We have discovered that the product of the human urokinase plasminogen activator gene, pro-uPA, is phosphorylated in serine in at least two human cell lines. Phosphorylation occurs within the cell during biosynthesis, and phosphorylated intracellular pro-uPA is secreted into the medium. Of the secreted pro-uPA molecules, 20-50% are phosphorylated in serine, thus representing a meaningful fraction of the total biosynthetic pro-uPA. Although the sites of phosphorylation have not yet been determined, at least two such sites must exist; in fact plasmin cleavage of phosphorylated single chain pro-uPA yields a two chain uPA in which both chains are phosphorylated. A specific function for pro-uPA phosphorylation has not yet been identified; however, it is tempting to speculate that, as in many other cases, phosphorylation may affect the activity of the enzyme, its response to inhibitors or the conversion of pro-uPA zymogen to active two-chain uPA. This would represent an additional way of regulating extracellular proteolysis, an important pathway involved in both intra- and extravascular phenomena like fibrinolysis, cell migration and invasiveness.  相似文献   

12.
Eukaryotic DNA polymerase delta is thought to consist of three (budding yeast) or four subunits (fission yeast, mammals). Four human genes encoding polypeptides p125, p50, p66, and p12 have been assigned as subunits of DNA polymerase delta. However, rigorous purification of human or bovine DNA polymerase delta from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. To reconstitute an intact DNA polymerase delta, we have constructed recombinant baculoviruses encoding the p125, p50, p66, and p12 subunits. From insect cells infected with four baculoviruses, protein preparations containing the four polypeptides of expected sizes were isolated. The four-subunit DNA polymerase delta displayed a specific activity comparable with that of the human, bovine, and fission yeast proteins isolated from natural sources. Recombinant DNA polymerase delta efficiently replicated singly primed M13 DNA in the presence of replication protein A, proliferating cell nuclear antigen, and replication factor C and was active in the SV40 DNA replication system. A three-subunit subcomplex consisting of the p125, p50, and p66 subunits, but lacking the p12 subunit, was also isolated. The p125, p50, and p66 polypeptides formed a stable complex that displayed DNA polymerizing activity 15-fold lower than that of the four-subunit polymerase. p12, expressed and purified individually, stimulated the activity of the three-subunit complex 4-fold on poly(dA)-oligo(dT) template-primer but had no effect on the activity of the four-subunit enzyme. Therefore, the p12 subunit is required to reconstitute fully active recombinant human DNA polymerase delta.  相似文献   

13.
14.
Established cell lines derived from human urinary bladder carcinomas produce heat-stable alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] which resembles the oncofetal enzyme of HeLa S3. Rat bladder cancer cell lines derived from chemically induced tumors produce heat-labile alkaline phosphatase. Corticosteroids and/or hyperosmolality do not influence the enzyme of rodent cells, but induce increased levels of activity in human cells. The increase is most pronounced when human cells multiply in hyperosmolar medium containing prednisolone. Under these conditions a rise of over 100-fold in specific activity is noted. This synergistic effect, not seen with other cultured heteroploid cells, may represent a specific characteristic of cells derived from human bladder tumors.  相似文献   

15.
The membrane-bound serine proteinase matriptase, which is often released from the plasma membrane of epithelial and carcinoma cells, has been implicated to play important roles in both physiological and pathological conditions. However, the regulatory mechanism of its activity is poorly understood. In the present study, we examined expression and activation state of soluble matriptase in 24 human cancer cell lines. Soluble matriptase was detected in the conditioned media from all of 5 colon and 4 breast carcinoma cell lines and 8 of 10 stomach carcinoma cell lines tested. Only two of five lung cancer cell lines released the matriptase protein into the culture media. Out of the five matriptase-negative cell lines, two cell lines expressed the matriptase mRNA. Among 24 cancer cell lines tested, 13 cell lines secreted trypsin in an active or latent form and all of them released matriptase. Most of the 24 cell lines released a latent, single-chain matriptase of 75 kDa as a major form, as well as low levels of complex forms of an activated two-chain enzyme with its specific inhibitor HAI-1. Thus, these soluble matriptases appeared to have little proteolytic activity. Treatment of stomach and colon cancer cell lines with epidermal growth factor stimulated the release of matripatase/HAI-1 complexes. In cancer cell lines secreting active trypsin, however, matriptase was released mostly as an inhibitor-free, two-chain active form. Trypsin seemed to activate the membrane-bound, latent matriptase on the cell surface. These results suggest that matriptase and trypsin cooperatively function for extracellular proteolysis.  相似文献   

16.
Previous studies in this laboratory have identified two distinct nuclear poly(A) polymerases, a 48 kDA tumor type enzyme and a 36-38 kDA liver type enzyme. To investigate the tissue and species specificity of these enzymes, nuclear extracts were prepared from various rat tissues, pig brain and two human cell lines. These as well as whole cell extract from yeast were probed for the two enzymes by immunoblot analysis using polyclonal anti-tumor poly(A) polymerase antibodies or autoimmune sera which contain antibodies specific for the liver type enzyme. Results indicate that both tumor and liver type enzymes are conserved across species ranging from rat to human. The yeast enzyme does not appear to be immunologically related to the liver or the tumor type poly(A) polymerase. The liver type enzyme appears to be specific for normal tissues whereas the tumor type enzyme is detected only in tissues in a "tumorigenic" state or cell lines originating from tumor tissues.  相似文献   

17.
Three hybridoma cell lines secreting antibodies against human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) were produced. Purified IgG2b from these cell lines recognized a distinct band of Mr 28,000 on SDS/PAGE from the purified enzyme as well as a band of Mr 56,000 from the crude enzyme preparation. These three monoclonal antibodies inhibited 15-OH-PGDH activity to different degrees. Inhibition of the enzyme activity could be prevented by prior incubation of the enzyme with NAD+ but not with prostaglandin E2 (PGE2) or NADP+. Inhibition by monoclonal antibodies appears to be non-competitive with respect to NAD+ and PGE2. An increased concentration of antibodies alters the apparent Km for NAD+ but not for PGE2, further supporting the notion that the antibodies bind to the coenzyme-binding site. The availability of these monoclonal antibodies should be valuable for probing the structure of the active site.  相似文献   

18.
Multidrug resistance (MDR) in an MCF-7 human breast cancer cell line (MCF7/Adr) is associated with decreased drug accumulation and overexpression of P-glycoprotein as well as alterations in the levels of specific drug-metabolizing enzymes, including decreased activity of the phase I drug-metabolizing enzyme aryl hydrocarbon hydroxylase (AHH) and increased expression of the anionic form of the phase II drug-metabolizing enzyme glutathione S-transferase. Since the development of MDR in this MCF-7 cell line is also associated with a loss of estrogen receptors (ER), we have examined the expression of cytochrome P450IA 1, the gene encoding AHH activity, in other breast cancer cell lines not selected for drug resistance but expressing various levels of ER. These studies show that a relationship exists between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible AHH activity and the ER content in a series of breast cancer cell lines. In these cell lines expression of AHH activity is regulated, at least in part, at the level of P450IA 1 RNA. While TCDD-specific binding proteins (Ah receptors) were found in each of the breast cancer cell lines, there was no apparent relation between the level of nuclear TCDD-binding proteins and the level of TCDD-inducible P450IA 1 expression. Previous studies from our laboratory have described an inverse relationship between levels of the anionic form of glutathione S-transferase and ER in breast cancer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Somatic cells do not have telomerase activity but immortalized cell lines and more than 85 % of the cancer cells show telomerase activation to prevent the telomere from progressive shortening. The activation of this enzyme has been found in a variety of human tumors and tumor-derived cell lines, but only few studies on telomerase activity in human brain tumors have been reported. Here, we evaluated telomerase activity in different grades of human astrocytoma and meningioma brain tumors. In this study, assay for telomerase activity performed on 50 eligible cases consisted of 26 meningioma, 24 astrocytoma according to the standard protocols. In the brain tissues, telomerase activity was positive in 39 (65 %) of 50 patients. One sample t test showed that the telomerase activity in meningioma and astrocytoma tumors was significantly positive entirely (P < 0.001). Also, grade I of meningioma and low grades of astrocytoma (grades I and II) significantly showed telomerase activity. According to our results, we suggest that activation of telomerase is an event that starts mostly at low grades of brain including meningioma and astrocytoma tumors.  相似文献   

20.
1. The present communication is concerned with the expression and cell cycle-dependent regulation of the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in cultured nerve cell lines derived from the rat central nervous system (CNS). 2. The enzyme activity was measured in relation to two reversible serum-controlled growth states (exponentially growing/quiescent) including a comparison of the enzyme activities in cell lines of neuronal and glial origin as well as in fibroblasts. CNPase is present in all cell types tested, but the enzyme activity is very sensitive to changes in the cellular growth state. Nerve cell lines in exponentially growing cultures express a 3 to 15 times higher specific CNPase activity than the nonneural cell types. In serum-starved quiescent cultures, the differences in specific enzyme activity between the nerve cell lines and the fibroblasts are enlarged even more up to a ratio of about 50 to 150, indicating a specific function of this enzyme within the central nervous system. 3. Neuron-like B104 cells could be stimulated to synchronized growth by serum readdition to quiescent cultures. A series of ordered activity changes of CNPase has been observed after the reinitiation of cell growth. The enzyme is stimulated at two particular stages during the cell cycle, leading to a biphasic activity profile. Maximum stimulation of CNPase correlates with the G1 phase. 4. Hydroxyurea-induced blockage of synchronized B104 cells to traverse the S phase also prevents the subsequent stimulation of CNPase activity. Therefore, we conclude that a correlation exists between the periodic activity changes of CNPase and particular phases of the B104 cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号