首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assessed the effects of hamstring prefatigue on peak torque, peak power, time to peak torque, knee angle of peak torque, and electromyography (EMG) activity of the hamstrings and quadriceps group during knee extensions at angular velocities of 60 degrees, 180 degrees, and 300 degrees.s(-1). Twenty Division I wrestlers performed 5 maximal knee extensions in prefatigued and nonfatigued conditions of the hamstring group. This study demonstrated that when the hamstrings were prefatigued, the quadriceps produced significant decreases in peak torque of 1.7% (p < 0.05), peak power of 11% (p < 0.05), and rate to peak torque of 6.4% (p < 0.01) as compared with the nonfatigued state. When the hamstrings were prefatigued, they produced a 25% greater amount of EMG activity during knee extension (p < 0.01) than when not prefatigued. There was no significant difference in quadriceps EMG activity whether the hamstring group was prefatigued or not (p > 0.05). The decrease in quadriceps peak torque during the prefatigued condition was more pronounced (p < 0.01) at an angular velocity of 60 degrees.s(-1) than at 180 degrees or 300 degrees.s(-1). In other words, prefatiguing the antagonist appears to be most detrimental to torque output of the quadriceps in the condition that most closely replicates the speed at which "isotonic" weight training occurs (60 degrees.s(-1)) and suggests a limitation to agonist-antagonist superset training.  相似文献   

2.
A decreased hamstring:quadriceps (H:Q) ratio may put the hamstrings and anterior cruciate ligament (ACL) at increased risk of injury. Therefore, the purpose of this study was to evaluate H:Q ratios of 12 female National Collegiate Athletic Association soccer players, and to test the effects of a 6-week strength training program on these ratios. Each subject completed 2 practice sessions before a pretest. Subjects then completed 6 weeks of strength training that included the addition of 2 hamstring specific exercises, followed by a posttest. Peak torque during concentric and eccentric actions for both hamstrings and quadriceps was measured with an isokinetic dynamometer. Each muscle action was tested at 3 angular velocities in the following order: concentric 240, 180, and 60 degrees x s(-1) and eccentric 60, 180, and 240 degrees x s(-1). The H:Q strength ratio was evaluated using concentric muscle actions (concentric hamstrings:concentric quadriceps). This method is commonly used and is thus called the conventional ratio. Because concentric actions do not occur simultaneously in opposing muscles, a more functional assessment compares eccentric hamstring actions to concentric quadriceps actions. This functional ratio was also analyzed. Mean conventional and functional H:Q ratio data were analyzed using separate analysis of variance procedures with repeated measures on all factors (2 [Test] x 2 [Leg] x 3 [Angular Velocity]). The results revealed a significant main effect for factor (F test) with the functional ratio (p < 0.05) but not for the conventional ratio. The mean functional ratio increased from 0.96 +/- 0.09 in pretest to 1.08 +/- 0.11 in posttest. These results suggest that 6 weeks of strength training that emphasizes hamstrings is sufficient to significantly increase the functional ratio. The functional ratio after training exceeded 1.0, which is specifically recommended for prevention of ACL injuries.  相似文献   

3.
Knee joint injuries are a serious issue in soccer. The ability to protect the knee from injury depends largely on the strength of the hamstring relatively to the quadriceps, that is, a low hamstring/quadriceps (H/Q) strength ratio is suggested as a risk factor. Although maximal muscle strength (MVC) has often been used to evaluate the H/Q ratio, the ability to rapidly develop force (rate of force development [RFD]) is more relevant in relation to fast dynamic movements. The aim of this study was to introduce and investigate a rapid RFD H/Q strength ratio compared with the traditional MVC H/Q strength ratio in elite soccer players. Twenty-three elite soccer players (11 women, 12 men) performed maximal voluntary static contraction for the hamstring and quadriceps in an isokinetic dynamometer, from which the maximal muscles strength (MVC) and RFD were extracted. Test-retest reliability for the RFD H/Q ratio was high (intraclass correlation coefficient = 0.664-0.933). The initial contraction phase up to 50 milliseconds from the onset of contraction showed a low RFD H/Q ratio compared to the MVC H/Q ratio (p < 0.001). These results suggest a reduced potential for knee joint stabilization during the very initial phase of muscle contraction. Two female players-both with a markedly low RFD H/Q ratio, but a normal MVC H/Q ratio, compared with the group mean-sustained ACL rupture at a later occasion. The high reliability of the new RFD H/Q strength ratio indicates that the method is a relevant tool in standardized clinical evaluation of the knee joint agonist-antagonist relationship.  相似文献   

4.
The purpose of this study was to determine the effects of environmental cooling on force production in the quadriceps and hamstring muscles. Ten men (mean +/- SD: age = 21.4 +/- 2.2 years, height = 168.5 +/- 35.9 cm, body mass = 78.0 +/- 6.4 kg) participated in this study. Each subject completed 2 sets of 10 maximal effort repetitions on a Cybex II isokinetic dynamometer at 3.14 rad x s(-1). Between sets, subjects sat in environmental temperatures of 20, 15, 10, or 5 degrees C for 40 minutes. A significant decrease (p 相似文献   

5.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

6.
Anterior cruciate ligament (ACL) rupture ranks among the most common injuries in sports. The incidence of ACL injuries is considerably higher in females than in males and the underlying mechanisms are still under debate. Furthermore, it has been suggested that muscle fatigue can be a risk factor for ACL injuries.We investigated gender differences in hamstring reflex responses and posterior-anterior tibial translation (TT) before and after fatiguing exercise. We assessed the isolated movement of the tibia relative to the femur in the sagittal plane as a consequence of mechanically induced TT in standing subjects. The muscle activity of the hamstrings was evaluated. Furthermore, isometric maximum voluntary torque (iMVT) and rate of torque development (RTD) of the hamstrings (H) and quadriceps (Q) were measured and the MVT H/Q as well as the RTD H/Q ratios were calculated.After fatigue, reflex onset latencies were enhanced in women. A reduction of reflex responses associated with an increased TT was observed in females. Men showed no differences in these parameters. Correlation analysis revealed no significant associations between parameters for TT and MVT H/Q as well as RTD H/Q.The results of the present study revealed that the fatigue protocol used in this study altered the latency and magnitude of reflex responses of the hamstrings as well as TT in women. These changes were not found in men. Based on our results, it is conceivable that the fatigue-induced decrease in neuromuscular function with a corresponding increase in TT probably contributes to the higher incidence of ACL injuries in women.  相似文献   

7.
Isokinetic strength measurements of the quadriceps and hamstring that are commonly conducted using a 90 degrees range of motion (RoM) may involve some risk to specific knee patient groups. Testing these muscles at a much shorter RoM may reduce the risk but in order to render this method clinically acceptable the reproducibility of the derived test findings has to be established. Therefore the main objective of this study was to assess the reproducibility of isokinetic peak torque and normalized EMG scores of these muscles based on 90 degrees (0-90 degrees flexion, LR) and three successive short RoMs: 0-30 degrees (SR1), 30-60 degrees (SR2) and 60-90 degrees (SR3). Eight healthy subjects were tested three times with a 2 week between-session interval. All tests were performed on the dominant limb and consisted of maximal concentric and eccentric exertions. The velocities applied were 90 degrees /s for LR and 30 degrees /s for each of the SRs. Findings indicated no between-session improvement in strength. Based on the coefficient of variation the measurement error for all isokinetic strength scores remained stable throughout the testing sessions ranging 0.6-13.9% with the absolute majority of instances less than 10%. The reproducibility of the EMG scores was poorer ranging 1.5-25% and 0.5-19% for the quadriceps and hamstring, respectively. It is concluded that testing of knee muscles at short (30 degrees ) RoMs does not compromise the reproducibility of the strength or EMG scores derived from the commonly used RoM of 90 degrees . However, whereas strength was reproducible to within the accepted clinical standards, the corresponding EMG scores were characterized by a wider error band.  相似文献   

8.
Hamstring muscle kinematics and activation during overground sprinting   总被引:3,自引:0,他引:3  
Hamstring muscle strain injury is one of the most commonly seen injuries in sports such as track and field, soccer, football, and rugby. The purpose of this study was to advance our understanding of the mechanisms of hamstring muscle strain injuries during over ground sprinting by investigating hamstring muscle-tendon kinematics and muscle activation. Three-dimensional videographic and electromyographic (EMG) data were collected for 20 male runners, soccer or lacrosse players performing overground sprinting at their maximum effort. Hamstring muscle-tendon lengths, elongation velocities, and linear envelop EMG data were analyzed for a running gait cycle of the dominant leg. Hamstring muscles exhibited eccentric contractions during the late stance phase as well as during the late swing phase of overground sprinting. The peak eccentric contraction speeds of the hamstring muscles were significantly greater during the late swing phase than during the late stance phase (p=0.001) while the hamstring muscle-tendon lengths at the peak eccentric contraction speeds were significantly greater during the late stance phase than during the late swing phase (p=0.001). No significant differences existed in the maximum hamstring muscle-tendon lengths between the two eccentric contractions. The potential for hamstring muscle strain injury exists during the late stance phase as well as during the late swing phases of overground sprinting.  相似文献   

9.
One proposed mechanism of patellofemoral pain, increased stress in the joint, is dependent on forces generated by the quadriceps muscles. Describing causal relationships between muscle forces, tissue stresses, and pain is difficult due to the inability to directly measure these variables in vivo. The purpose of this study was to estimate quadriceps forces during walking and running in a group of male and female patients with patellofemoral pain (n=27, 16 female; 11 male) and compare these to pain-free controls (n=16, 8 female; 8 male). Subjects walked and ran at self-selected speeds in a gait laboratory. Lower limb kinematics and electromyography (EMG) data were input to an EMG-driven musculoskeletal model of the knee, which was scaled and calibrated to each individual to estimate forces in 10 muscles surrounding the joint. Compared to controls, the patellofemoral pain group had greater co-contraction of quadriceps and hamstrings (p=0.025) and greater normalized muscle forces during walking, even though the net knee moment was similar between groups. Muscle forces during running were similar between groups, but the net knee extension moment was less in the patellofemoral pain group compared to controls. Females displayed 30–50% greater normalized hamstring and gastrocnemius muscle forces during both walking and running compared to males (p<0.05). These results suggest that some patellofemoral pain patients might experience greater joint contact forces and joint stresses than pain-free subjects. The muscle force data are available as supplementary material.  相似文献   

10.
This study addresses the question whether unintended response of the knee flexors (hamstrings) accompanies transcutaneous functional electrical stimulation (FES) of the quadriceps and whether the knee torque is hereby affected. Transcutaneous FES of the right quadriceps of two paraplegic subjects was applied and measurements were made of the net torque and of the myoelectric activities of the quadriceps and hamstrings muscles of the right leg. A low correlation was obtained between the peak-to-peak amplitudes of the M-waves of the two muscles. This correlation decreased further with the development of fatigue, which indicated that the electromyography (EMG) signals from the hamstrings were not the result of cross-talk between adjacent recording sites. The force profile of each muscle was determined from a developed model incorporating EMG-based activation, muscle anthropometry as obtained from in vivo magnetic resonance imaging of the thigh, and metabolic fatigue function, based on data acquired by 31P nuclear magnetic resonance spectroscopy. A sensitivity analysis revealed that the muscle specific tension and the muscle moment arms have a major influence on the resulting muscle forces and should therefore be accurately provided. The results show that during the unfatigued phase of contraction the estimated maximal force in the hamstrings was lower than 20% of that in the quadriceps and could be considered to be practically negligible. As fatigue progressed the hamstrings-to-quadriceps force ratio increased, reaching up to 45%, and the effect of co-activation on the torque partition between the two muscles was no longer negligible.  相似文献   

11.
The purpose of this study was to investigate the effects of a resistance training program on the muscular strength of soccer players’ knees that initially presented unilateral and bilateral differences. For this study, a team of 24 male well-trained junior soccer players was divided into two strength program training groups: a Resistance Training Control Group (RTCG) composed of 10 players that did not have muscular imbalances and a Resistance Training Experimental Group (RTEG) composed of 14 players that had muscular imbalances. All players followed a resistance training program for six weeks, two times per week, during the transition period. The program of individualized strength training consisted of two parts. The first part, which was identical in terms of the choice of training loads, was intended for both training groups and contained two series of exercises including upper and lower body exercises. The second part of the program was intended only for RTEG and consisted of two additional series for the groups of muscles that had identified unilateral and bilateral differences. The applied program showed various directions in the isokinetic profile of changes. In the case of RTCG, the adaptations related mainly to the quadriceps muscle (the peak torque (PT) change for the dominant leg was statistically significant (p < 0.05)). There were statistically significant changes in RTEG (p < 0.05) related to PT for the hamstrings in both legs, which in turn resulted in an increase in the conventional hamstring/quadriceps ratio (H/Q). It is interesting that the statistically significant (p < 0.05) changes were noted only for the dominant leg. No statistically significant changes in bilateral differences (BD) were noted in either group. These results indicate that individualized resistance training programs could provide additional benefits to traditional strength training protocols to improve muscular imbalances in post-adolescent soccer players.  相似文献   

12.
The purpose of this investigation was to study the effect of one-legged exercise on the strength, power and endurance of the contralateral leg. The performance of the knee extensor and flexor muscle of 20 healthy young adults (10 men and 10 women) was first tested by Cybex II+ and 340 dynamometers. Then 10 subjects were chosen at random to train using one leg three times a week for 7 weeks whilst the other 10 served as controls. During the 8th week, the tests were repeated. Both quadriceps and hamstring muscles of the trained subjects showed a cross-transfer effect from the trained limb to the untrained side. This concerned the strength and power, as well as endurance characteristics of these muscles. The average change in peak torque of the quadriceps muscle was +19% (P less than 0.001) in the trained limb, +11% (P less than 0.01) in the untrained limb and 0% in the control limbs. In hamstring muscles the changes were +14% (P less than 0.01), +5% and -1%, respectively. Concerning muscle endurance (work performed during the last 5 contractions in the 25-repetition test) the corresponding changes were +15% (P less than 0.01), +7% (P less than 0.01), and -1% in quadriceps muscle, and +17% (P less than 0.05), +7%, and -3% in hamstring muscles. The average strength benefit in the untrained limb was +36% (hamstring muscles) and +58% (quadriceps muscle) of that achieved in the trained limb. Untrained hamstring muscle showed better benefits in the endurance parameters than in strength or power parameters, while in the quadriceps muscle this effect was reversed. A positive relationship was observed between the changes (greater improvement in the trained limb resulted in greater improvement in the untrained limb) (hamstring muscles: r = 0.83, P less than 0.001, quadriceps muscle: r = 0.53, P less than 0.001). In endurance parameters, this relationship was almost linear while in the strength and power parameters the results were more in favour of a curvilinear relationship with limited benefit.  相似文献   

13.
The purpose of this study was to compare electromyographic (EMG) activity during open kinetic chain (OKC) and a modified closed kinetic chain (MCKC) knee extension exercises. Both OKC and closed kinetic chain (CKC) exercises provide benefits when devising conditioning programs; however, there are no exercises that combine the benefits of both exercises. Subjects performed maximum isometric knee extensions for both traditional OKC and MCKC knee extension exercises. Surface electrodes were placed on 8 lower-extremity muscles. One second of integrated EMG activity followed 95% maximal knee extension force. The following muscles demonstrated greater EMG activity during the MCKC vs. the OKC knee extension exercises: vastus medialis, medial hamstring, lateral hamstrings, and gluteus maximus. There was no difference between force output between the 2 conditions. This study demonstrates that modifications to traditional OKC exercises demonstrate some characteristics of CKC exercises, and therefore provide another avenue of rehabilitation or strengthening.  相似文献   

14.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

15.
Previous research indicates that both the extent and timing of muscular activation at the knee can be influenced by muscle activity state, joint angle, weight-bearing status and trunk position. However, little research to date has evaluated protective neuromuscular response times and activation patterns to an imposed perturbation with the knee joint in a functional, weight-bearing stance. Hence, we designed a lower extremity perturbation device to produce a sudden, forward and either internal or external rotation moment of the trunk and femur relative to the weight-bearing tibia. Surface electromyography (EMG) recorded long latency reflex times of the medial and lateral quadriceps, hamstring and gastrocnemius muscles in 64 intercollegiate lacrosse and soccer players in response to both internal and external rotation perturbation. We found the gastrocnemius fired significantly faster that the hamstring, which in turn fired significantly faster than the quadriceps. There was also a significant difference in activation times of the medial and lateral hamstring not found for the quadriceps or gastrocnemius muscles. Our findings confirmed that reactive neuromuscular responses following this functional perturbation differ markedly from those previously reported using seated, partial weight-bearing and/or uni-planar models under relaxed conditions.  相似文献   

16.
Muscle fatigue is associated with reduced power output and work capacity of the skeletal muscle. Fatigue-induced impairments in muscle function are believed to be a potential cause of increased injury rates during the latter stages of athletic competition and often occur during unexpected perturbations. However the effect of fatigue on functionally relevant, full body destabilizing perturbations has not been investigated. This study examines the effect of muscle fatigue on the activation of the quadriceps and hamstrings to fast, full body perturbations evoked by a moveable platform. Surface electromyographic (EMG) signals were recorded from the knee extensor (vastus medialis, rectus femoris, and vastus lateralis) and flexor muscles (biceps femoris and semitendinosus) of the right leg in nine healthy men during full body perturbations performed at baseline and immediately following high intensity exercise performed on a bicycle ergometer. In each condition, participants stood on a moveable platform during which 16 randomized postural perturbations (eight repetitions of two perturbation types: 8 cm forward slides, 8 cm backward slides) with varying inter-perturbation time intervals were performed over a period of 2-3 min. Maximal voluntary knee extension force was measured before and after the high intensity exercise protocol to confirm the presence of fatigue. Immediately after exercise, the maximal force decreased by 63% and 66% for knee extensors and flexors, respectively (P<0.0001). During the post-exercise postural perturbations, the EMG average rectified value (ARV) was significantly lower than the baseline condition for both the knee extensors (average across all muscles; baseline: 19.7±25.4μV, post exercise: 16.2±19.4 μV) and flexors (baseline: 24.3±20.9 μV, post exercise: 13.8±11.0 μV) (both P<0.05). Moreover the EMG onset was significantly delayed for both the knee extensors (baseline: 132.7±32.9 ms, post exercise: 170.8±22.9 ms) and flexors (baseline: 139.1±38.8 ms, post exercise: 179.3±50.9 ms) (both P<0.05). A significant correlation (R(2)=0.53; P<0.05) was identified between the percent reduction of knee extension MVC and the percent change in onset time of the knee extensors post exercise. This study shows that muscle fatigue induces a reduction and delay in the activation of both the quadriceps and hamstring muscles in response to rapid destabilizing perturbations potentially reducing the stability around the knee.  相似文献   

17.
Research suggests that static stretching can negatively influence muscle strength and power and may result in decreased functional performance. The dynamic warm-up (DWU) is a common alternative to static stretching before physical activity, but there is limited research investigating the effects of a DWU. The purpose of this study was to compare the acute effects of a DWU and static stretching warm-up (SWU) on muscle flexibility, strength, and vertical jump using a randomized controlled trial design. Forty-five volunteers were randomly assigned into a control (CON), SWU, or DWU group. All participants rode a stationary bicycle for 5 minutes and completed a 10-minute warm-up protocol. During this protocol, the DWU group performed dynamic stretching and running, the SWU group performed static stretching, and the CON group rested. Dependent variables were measured immediately before and after the warm-up protocol. A digital inclinometer measured flexibility (degrees) for the hamstrings, quadriceps, and hip flexor muscles. An isokinetic dynamometer measured concentric and eccentric peak torque (N·m/kg) for the hamstrings and quadriceps. A force plate was used to measure vertical jump height (meters) and power (watts). In the DWU group, there was a significant increase in hamstring flexibility (pretest: 26.4 ± 13.5°, posttest: 16.9 ± 9.4°; p < .0001) and eccentric quadriceps peak torque (pretest: 2.49 ± 0.83 N·m/kg, posttest: 2.78 ± 0.69 N·m/kg; p = 0.04). The CON and SWU did not significantly affect any flexibility, strength, or vertical jump measures (p > 0.05). The DWU significantly improved eccentric quadriceps strength and hamstrings flexibility, whereas the SWU did not facilitate any positive or negative changes in muscle flexibility, strength, power, or vertical jump. Therefore, the DWU may be a better preactivity warm-up choice than an SWU.  相似文献   

18.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

19.
Based on results from quasi-static experiments, it has been suggested that the lower extremity muscle activity is adjusted in reaction to impact forces with the goal of minimizing soft-tissue vibrations. It is not known whether a similar muscle tuning occurs during dynamic activities. Thus, the purpose of this study was to determine the effect of changes in the input signal on (a) vibrations of lower extremity soft-tissue packages and (b) EMG activity of related muscles during heel-toe running. Subjects performed heel-toe running in five different shoe conditions. Ground reaction forces were measured with a KISTLER force platform, soft-tissue vibrations were measured with tri-axial accelerometers and muscle activity was measured using surface EMG from the quadriceps, hamstrings, tibialis anterior and triceps surae groups from 10 subjects. By changing both the speed of running and the shoe midsole material the impact force characteristics were changed. There was no effect of changes in the input signal on the soft-tissue peak acceleration following impact. A significant correlation (R2=0.819) between the EMG pre-activation intensity and the impact loading rate changes was found for the quadriceps. In addition, the input frequency was shown to approach the vibration frequency of the quadriceps. This evidence supports the proposed paradigm that muscle activity is tuned to impact force characteristics to control the soft-tissue vibrations.  相似文献   

20.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号