首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p < 0.05), and the OKCRT group improved 0.3 mph (0.5%, NS). A significant interaction was observed (p < 0.05). The CKCRT group improved its 1RM bench press to the same degree (1.9 kg) as the OKCRT group (p < 0.05 within each group). The CKCRT group improved all measures of shoulder strength and power, whereas OKCRT conferred little change in shoulder torque and power scores. Although throwing is an open-chain movement, adaptations from CKCRT may confer benefits to subsequent performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.  相似文献   

2.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

3.
Fifteen highly trained distance runners VO(2)max 71.1 +/- 6.0 ml.min(-1).kg(-1), mean +/- SD) were randomly assigned to a plyometric training (PLY; n = 7) or control (CON; n = 8) group. In addition to their normal training, the PLY group undertook 3 x 30 minutes PLY sessions per week for 9 weeks. Running economy (RE) was assessed during 3 x 4 minute treadmill runs (14, 16, and 18 km.h(-1)), followed by an incremental test to measure VO(2)max. Muscle power characteristics were assessed on a portable, unidirectional ground reaction force plate. Compared with CON, PLY improved RE at 18 km.h(-1) (4.1%, p = 0.02), but not at 14 or 16 km.h(-1). This was accompanied by trends for increased average power during a 5-jump plyometric test (15%, p = 0.11), a shorter time to reach maximal dynamic strength during a strength quality assessment test (14%, p = 0.09), and a lower VO(2)-speed slope (14%, p = 0.12) after 9 weeks of PLY. There were no significant differences in cardiorespiratory measures or VO(2)max as a result of PLY. In a group of highly-trained distance runners, 9 weeks of PLY improved RE, with likely mechanisms residing in the muscle, or alternatively by improving running mechanics.  相似文献   

4.
The purpose of this study was to compare pure eccentric and concentric isokinetic training with respect to their possible specificity in the adaptation of strength and morphology of the knee extensor muscles. Ten moderately trained male physical education students were divided into groups undertaking eccentric (ETG) and concentric (CTG) training. They performed 10 weeks of maximal isokinetic (90 degrees x s(-1)) training of the left leg, 4x10 repetitions - three times a week, followed by a second 10-week period of similar training of the right-leg. Mean eccentric and concentric peak torques increased by 18% and 2% for ETG and by 10% and 14% for CTG, respectively. The highest increase in peak torque occurred in the eccentric 90 degrees x s(-1) test for ETG (35%) whereas in CTG strength gains ranged 8%-15% at velocities equal or lower than the training velocity. Significant increases in strength were observed in the untrained contra-lateral leg only at the velocity and mode used in ipsilateral training. Cross-sectional area of the quadriceps muscle increased 3%-4% with training in both groups, reaching statistical significance only in ETG. No major changes in muscle fibre composition or areas were detected in biopsies from the vastus lateralis muscle for either leg or training group. In conclusion, effects of eccentric training on muscle strength appeared to be more mode and speed specific than corresponding concentric training. Only minor adaptations in gross muscle morphology indicated that other factors, such as changes in neural activation patterns, were causing the specific training-induced gains in muscle strength.  相似文献   

5.
6.
Throwing velocity is an important baseball performance variable for baseball pitchers, because greater throwing velocity results in less time for hitters to make a decision to swing. Throwing velocity is also an important baseball performance variable for position players, because greater throwing velocity results in decreased time for a runner to advance to the next base. This study compared the effects of 3 baseball-specific 6-week training programs on maximum throwing velocity. Sixty-eight high school baseball players 14-17 years of age were randomly and equally divided into 3 training groups and a nontraining control group. The 3 training groups were the Throwers Ten (TT), Keiser Pneumatic (KP), and Plyometric (PLY). Each training group trained 3 d·wk(-1) for 6 weeks, which comprised approximately 5-10 minutes for warm-up, 45 minutes of resistance training, and 5-10 for cool-down. Throwing velocity was assessed before (pretest) and just after (posttest) the 6-week training program for all the subjects. A 2-factor repeated measures analysis of variance with post hoc paired t-tests was used to assess throwing velocity differences (p < 0.05). Compared with pretest throwing velocity values, posttest throwing velocity values were significantly greater in the TT group (1.7% increase), the KP group (1.2% increase), and the PLY group (2.0% increase) but not significantly different in the control group. These results demonstrate that all 3 training programs were effective in increasing throwing velocity in high school baseball players, but the results of this study did not demonstrate that 1 resistance training program was more effective than another resistance training program in increasing throwing velocity.  相似文献   

7.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

8.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

9.
The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.  相似文献   

10.
A decreased hamstring:quadriceps (H:Q) ratio may put the hamstrings and anterior cruciate ligament (ACL) at increased risk of injury. Therefore, the purpose of this study was to evaluate H:Q ratios of 12 female National Collegiate Athletic Association soccer players, and to test the effects of a 6-week strength training program on these ratios. Each subject completed 2 practice sessions before a pretest. Subjects then completed 6 weeks of strength training that included the addition of 2 hamstring specific exercises, followed by a posttest. Peak torque during concentric and eccentric actions for both hamstrings and quadriceps was measured with an isokinetic dynamometer. Each muscle action was tested at 3 angular velocities in the following order: concentric 240, 180, and 60 degrees x s(-1) and eccentric 60, 180, and 240 degrees x s(-1). The H:Q strength ratio was evaluated using concentric muscle actions (concentric hamstrings:concentric quadriceps). This method is commonly used and is thus called the conventional ratio. Because concentric actions do not occur simultaneously in opposing muscles, a more functional assessment compares eccentric hamstring actions to concentric quadriceps actions. This functional ratio was also analyzed. Mean conventional and functional H:Q ratio data were analyzed using separate analysis of variance procedures with repeated measures on all factors (2 [Test] x 2 [Leg] x 3 [Angular Velocity]). The results revealed a significant main effect for factor (F test) with the functional ratio (p < 0.05) but not for the conventional ratio. The mean functional ratio increased from 0.96 +/- 0.09 in pretest to 1.08 +/- 0.11 in posttest. These results suggest that 6 weeks of strength training that emphasizes hamstrings is sufficient to significantly increase the functional ratio. The functional ratio after training exceeded 1.0, which is specifically recommended for prevention of ACL injuries.  相似文献   

11.
The effects of increased muscle temperature via continuous ultrasound prior to a maximal bout of eccentric exercise were investigated on the symptoms of delayed onset muscle soreness (DOMS) of the elbow flexors. Perceived muscle soreness, upper arm circumferences, range of motion (ROM), and isometric and isokinetic strength were measured over 7 days on 14 college-aged men (n = 6) and women (n = 8). Ten minutes of continuous ultrasound (ULT) or sham-ultrasound (CON) were administered. Muscle temperature was measured in the biceps brachii of both arms. Muscle temperature increased by 1.79 degrees +/- 0.49 degrees C (mean +/- SD) in the experimental arm of the ULT group. Muscle soreness was induced by a single bout of 50 maximal eccentric contractions. The ULT group did not differ significantly (p < 0.05) from the CON group with respect to perceived muscle soreness, upper arm circumference, ROM, and isometric and isokinetic strength. In conclusion, increased muscle temperature failed to provide significant prophylactic effects on the symptoms of DOMS.  相似文献   

12.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

13.
Imbalance of the eccentrically-activated external rotator cuff muscles versus the concentrically-activated internal rotator cuff muscles is a primary risk factor for glenohumeral joint injuries in overhead activity athletes. Nonisokinetic dynamometer based strength training studies, however, have focused exclusively on resulting concentric instead of applicable eccentric strength gains of the external rotator cuff muscles. Furthermore, previous strength training studies did not result in a reduction in glenoumeral joint muscle imbalance, thereby suggesting that currently used shoulder strength training programs do not effectively reduce the risk of shoulder injury to the overhead activity athlete. Two collegiate women tennis teams, consisting of 12 women, participated in this study throughout their preseason training. One team (n = 6) participated in a 5-week, 4 times a week, external shoulder rotator muscle strength training program next to their preseason tennis training. The other team (n = 6) participated in a comparable preseason tennis training program, but did not conduct any upper body strength training. Effects of this strength training program were evaluated by comparing pre- and posttraining data of 5 maximal eccentric external immediately followed by concentric internal contractions on a Kin-Com isokinetic dynamometer (Chattecx Corp., Hixson, Tennessee). Overall, the shoulder strength training program significantly increased eccentric external total work without significant effects on concentric internal total work, concentric internal mean peak force, or eccentric external mean peak force. In conclusion, by increasing the eccentric external total exercise capacity without a subsequent increase in the concentric internal total exercise capacity, this strength training program potentially decreases shoulder rotator muscle imbalances and the risk for shoulder injuries to overhead activity athletes.  相似文献   

14.
Although research has demonstrated that isokinetic eccentric (ECC) strength is 20-60% greater than isokinetic concentric (CON) strength, few data exist comparing these strength differences in standard dynamic resistance exercises. The purpose of the study was to determine the difference in maximal dynamic ECC and CON strength for 6 different resistance exercises in young men and women. Ten healthy young men (mean +/- SE, 25.30 +/- 1.34 years), and 10 healthy young women (mean +/- SE, 23.40 +/- 1.37 years) who were regular exercisers with resistance training experience participated in the study. Two sessions were performed to determine CON and ECC 1 repetitions maximum for latissimus pull-down (LTP), leg press (LP), bench press (BP), leg extension (LE), seated military press (MP), and leg curl (LC) exercises. Maximal ECC and maximal CON strength were determined on weight stack machines modified to isolate ECC and CON contractions using steel bars and pulleys such that only 1 type of contraction was performed. Within 2 weeks, participants returned and completed a retest trial in a counterbalanced fashioned. Test-retest reliability was excellent (r = 0.99) for all resistance exercise trials. Men demonstrated 20-60% greater ECC than CON strength (LTP = 32%, LP = 44%, BP = 40%, LE = 35%, MP = 49%, LC = 27%). Women's strength exceeded the proposed parameters for greater ECC strength in 4 exercises, p < 0.05 (LP = 66%, BP = 146%, MP = 161%, LC = 82%). The ECC/CON assessment could help coaches capitalize on muscle strength differences in young men and women during training to aid in program design and injury prevention and to enhance strength development.  相似文献   

15.
The purpose of this study was to examine the acute effects of static stretching on peak torque (PT) and the joint angle at PT during maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors at 60 and 180 degrees x s(-1) for the stretched and unstretched limbs in women. Thirteen women (mean age +/- SD = 20.8 +/- 0.8 yr; weight +/- SD = 63.3 +/- 9.5 kg; height +/- SD = 165.9 +/- 7.9 cm) volunteered to perform separate maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors with the dominant and nondominant limbs on a Cybex 6000 dynamometer at 60 and 180 degrees x s(-1). PT (Nm) and the joint angle at PT (degrees) were recorded by the dynamometer software. Following the initial isokinetic assessments, the dominant leg extensors were stretched (mean stretching time +/- SD = 21.2 +/- 2.0 minutes) using 1 unassisted and 3 assisted static stretching exercises. After the stretching (4.3 +/- 1.4 minutes), the isokinetic assessments were repeated. The statistical analyses indicated no changes (p > 0.05) from pre- to poststretching for PT or the joint angle at PT. These results indicated that static stretching did not affect PT or the joint angle at PT of the leg extensors during maximal, voluntary, eccentric isokinetic muscle actions at 60 and 180 degrees x s(-1) in the stretched or unstretched limbs in women. In conjunction with previous studies, these findings suggested that static stretching may affect torque production during concentric, but not eccentric, muscle actions.  相似文献   

16.
The primary purpose of this investigation was to study the eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man using a recently developed combined isometric, concentric and eccentric controlled velocity dynamometer (the SPARK System). A secondary purpose was to compare the method error associated with maximal voluntary concentric and eccentric torque output over a range of testing velocities. 21 males (21-32 years) performed on two separate days maximal voluntary isometric, concentric and eccentric contractions of the quadriceps femoris at 4 isokinetic lever arm velocities of 0 degree.s-1 (isometric), 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1. Eccentric peak torque and angle-specific torques (measured every 10 degrees from 30 degrees to 70 degrees) did not significantly change from 0 degrees.s-1 to 270 degrees.s-1 (p greater than 0.005) with the exception of angle-specific 40 degrees torque, which significantly increased; p less than 0.05). The mean method error was significantly higher for the eccentric tests (10.6% +/- 1.6%) than for the concentric tests (8.1% +/- 1.7%) (p less than 0.05). The mean method error decreased slightly with increasing concentric velocity (p greater than 0.05), and increased slightly with increasing eccentric velocity (p greater than 0.05). A tension restricting neural mechanism, if active during maximal eccentric contractions, could possibly account for the large difference seen between the present eccentric torque-velocity results and the classic results obtained from isolated animal muscle.  相似文献   

17.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Little is known about the velocity-specific adaptations to training utilizing movement velocities in excess of 300 degrees x s(-1). The purpose of this investigation was to determine the effects of 4 weeks of slow (60 degrees x s(-1)) vs. fast (400 degrees x s(-1)) velocity training on rate of velocity development (RVD), peak torque (PT), and performance. Twenty male kinesiology students (22.0 years +/- 2.72; 178.6 cm +/- 7.1; 82.7 kg +/- 15.5) were tested, before and after 4 weeks of training, for PT production, RVD (at 60, 180, 300, 400, and 450 degrees x s(-1)), standing long jump (SLJ) distance, and 15- and 40-m sprint times. All participants underwent 8 training sessions, performing 5 sets of 5 repetitions of simultaneous, bilateral, concentric knee extension exercises on a Biodex System 3 isokinetic dynamometer at either 60 degrees or 400 degrees per second. Two 5 (speed) x 2 (time) x 2 (group) multivariate repeated measures analyses of variance revealed no significant differences between groups on any measure. Therefore, the groups were collapsed for analysis. There was a significant (p < 0.05) main effect for RVD by time and SLJ distance by time (pre- 227.1 cm +/- 21.2; post- 232.9 cm +/- 20.7) but no significant change in PT or 15- or 40-m sprint times. These results offer support for the suggestion that there is a significant neural adaptation to short-term isokinetic training performed by recreationally trained males, producing changes in limb acceleration and performance with little or no change in strength. Because results were independent of training velocity, it appears as though the intention to move quickly is sufficient stimulus to achieve improvements in limb RVD. Changes in SLJ distance suggest that open kinetic chain training may benefit the performance of a closed kinetic chain activity when movement pattern specificity is optimized.  相似文献   

19.
High intensity strength training causes changes in steroid hormone concentrations. This could be altered by the muscular contraction type: eccentric or concentric. The aim of this study was to compare the effect of the completion of a short concentric (CON) and concentric/eccentric (CON/ECC) trial on the urinary steroid profile, both with the same total work. 18 males performed the trials on an isokinetic dynamometer (BIODEX III) exercising quadriceps muscles, right and left, on different days. Trial 1(CON): 4×10 Concentric knee extension + relax knee flexion, speed 60°/second; rest 90 seconds between each series and 4 minutes between each leg exercise. Trial 2(CON/ECC): 4×5 concentric knee extension + Eccentric knee flexion under similar conditions. Urine samples were taken before the exercise and one hour after finishing it. Androsterone, Etiocholanolone, DHEA, Androstenedione, Testosterone, Epitestosterone, Dehydrotestosterone, Estrone, B-Estradiol, Tetrahydrocortisone, Tetrahydrocortisol, Cortisone and Cortisol (free, glucoconjugated and sulfoconjugated) urinary values were determined using gas chromatography/mass spectrometry techniques. No significant differences were noted in Total Work and Average Peak Torque, although Maximum Peak Torque in the CON/ECC trial was higher than in the CON trial. These results demonstrate no changes in the steroid profile before and after trials, or when comparing CON to CON/ECC trials. The data suggest that eccentric contractions do not cause hormonal changes different to the ones produced by concentric contractions, when they are performed in strength short trials with the same total workload.  相似文献   

20.
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号