首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of strength training on freely chosen cadence and physiological responses in cyclists and recreationally active individuals were investigated. Well-trained cyclists were assigned to either usual endurance training combined with strength training (C-ES; n = 11) or usual endurance training only (C-E; n = 9). Recreationally active individuals (R-S; n = 7) performed the same strength training as C-ES did (4 lower body exercises, 3 × 4-10 repetition maximum [RM], twice a week for 12 weeks). The R-S and C-ES increased 1RM to a similar extent after 4 and 12 weeks (p < 0.01), whereas 1RM remained unchanged in C-E. Only R-S increased patellar tendon cross-sectional area (CSA; 7 ± 1%, p < 0.001). After 4 weeks, R-S reduced freely chosen cadence, oxygen consumption, heart rate, rating of perceived exertion, and blood lactate concentration during cycling at 125 W. These responses remained reduced throughout the intervention period (p < 0.05). No significant changes were observed in these physiological variables in C-ES and C-E. In conclusion, freely chosen cadence during submaximal cycling was reduced in recreationally active individuals after a period of strength training but was not reduced in well-trained cyclists. The reduced freely chosen cadence may be associated with the observed increase in patellar tendon CSA through a morphological-sensory-motor interaction. A practical application is that heavy strength training can reduce freely chosen cadence during submaximal cycling and thereby improve cycling economy in recreationally active individuals, whereas other mechanisms should account for improved performance after strength training in well-trained cyclists.  相似文献   

2.
The purpose of this study was to examine the effects of 3 resistance training volumes on maximal strength in the snatch (Sn), clean & jerk (C&J), and squat (Sq) exercises during a 10-week training period. Fifty-one experienced (>3 years), trained junior lifters were randomly assigned to one of 3 groups: a low-volume group (LVG, n = 16), a moderate-volume group (MVG, n = 17), and a high-volume group (HVG, n = 18). All subjects trained 4-5 days a week with a periodized routine using the same exercises and relative intensities but a different total number of sets and repetitions at each relative load: LVG (1,923 repetitions), MVG (2,481 repetitions), and HVG (3,030 repetitions). The training was periodized from moderate intensity (60- 80% of 1 repetition maximum [1RM]) and high number of repetitions per set (2-6) to high intensity (90-100% of 1RM) and low number of repetitions per set (1-3). During the training period, the MVG showed a significant increase for the Sn, C&J, and Sq exercises (6.1, 3.7, and 4.2%, respectively, p < 0.01), whereas in the LVG and HVG, the increase took place only with the C&J exercise (3.7 and 3%, respectively, p < 0.05) and the Sq exercise (4.6%, p < 0.05, and 4.8%, p < 0.01, respectively). The increase in the Sn exercise for the MVG was significantly higher than in the LVG (p = 0.015). Calculation of effect sizes showed higher strength gains in the MVG than in the HVG or LVG. There were no significant differences between the LVG and HVG training volume-induced strength gains. The present results indicate that junior experienced lifters can optimize performance by exercising with only 85% or less of the maximal volume that they can tolerate. These observations may have important practical relevance for the optimal design of strength training programs for resistance-trained athletes, since we have shown that performing at a moderate volume is more effective and efficient than performing at a higher volume.  相似文献   

3.
Although a dose-response relationship between resistance training frequency and strength has been identified, there is limited research regarding the association between frequency and body composition. This study evaluated the effects of 3 vs. 4 d·wk(-1) of resistance training on body composition and strength in middle-aged women. Twenty-one untrained women (age 47.6 ± 1.2 years) completed 8 weeks of resistance training either 3 nonconsecutive days of the week using a traditional total-body protocol (RT3) or 4 consecutive days of the week using an alternating split-training protocol (RT4). The RT3 completed 3 sets of 8 exercises, whereas RT4 completed 3 sets of 6 upper body exercises or 6 sets of 3 lower body exercises. Both groups completed 72 sets per week of 8-12 repetitions at 50-80% 1 repetition maximum. Weekly training volume load was calculated as the total number of repetitions × load (kg) completed per week. Body composition was measured using air displacement plethysmography. At baseline and after 8 weeks of resistance training, there were no significant between-group differences. Both protocols resulted in significant increases in absolute lean mass (1.1 ± 0.3 kg; p = 0.001), body weight (1.02 ± 0.3 kg; p = 0.005), body mass index (0.3 ± 0.1 kg·m(-2); p = 0.006), strength (p < 0.001), and weekly training volume load (p < 0.001). Correlation analysis revealed that weekly training volume load was strongly and positively related to gains in lean mass (r = 0.56, p = 0.05) and strength (r = 0.60, p = 0.006). In these untrained, middle-aged women, initial short-term gains in lean mass and strength were not influenced by training frequency when the number of training sets per week was equated.  相似文献   

4.
The purpose of the present study was to compare the effects of a program of resistance training in water-based exercises (RWE) with those of a program without resistance control in water-based exercises (WEs). Twenty-seven women (aged 60-74 years) were randomly assigned to the RWE group (n = 10), WE group (n = 10), or nontraining control (CON) group (n = 7). The RWE and WE groups trained classes with aerobic exercises and localized muscular resistance exercises for 50 minutes, twice a week for 12 weeks. For the RWE group, the program included 4 mesocycles of 3 weeks-respectively, 4 sets of 15 repetitions, 4 sets of 12 repetitions, 5 sets of 10 repetitions, and 5 sets of 8 repetitions-of shoulder horizontal flexion exercise at maximum speed, with the use of resistive equipment. For the WE group, the training was not periodized, and the resistance in the localized muscular exercises was not controlled. One repetition maximum (1RM) was measured on a pectoral fly machine at baseline and after the training period. The level of significance adopted was p ≤ 0.05. The results showed that the only significant increase in 1RM (10.89%, p < 0.001) occurred in the RWE group after training. In conclusion, these findings suggest that WEs with emphasis on resistance training in a periodized program can efficiently increase maximum strength in elderly women. Thus, it is suggested that the strategies used in WE programs be modified to offer suitable stimuli for the development of strength.  相似文献   

5.
Changes in muscle mass and strength will vary, depending on the volume and frequency of training. The purpose of this study was to determine the effect of short-term equal-volume resistance training with different workout frequency on lean tissue mass and muscle strength. Twenty-nine untrained volunteers (27-58 years; 23 women, 6 men) were assigned randomly to 1 of 2 groups: group 1 (n = 15; 12 women, 3 men) trained 2 times per week and performed 3 sets of 10 repetitions to fatigue for 9 exercises, group 2 (n = 14; 11 women, 3 men) trained 3 times per week and performed 2 sets of 10 repetitions to fatigue for 9 exercises. Prior to and following training, whole-body lean tissue mass (dual energy x-ray absorptiometry) and strength (1 repetition maximum squat and bench press) were measured. Both groups increased lean tissue mass (2.2%), squat strength (28%), and bench press strength (22-30%) with training (p < 0.05), with no other differences. These results suggest that the volume of resistance training may be more important than frequency in developing muscle mass and strength in men and women initiating a resistance training program.  相似文献   

6.
This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.  相似文献   

7.
The purpose of this study was to investigate the importance of training leading to repetition failure in the performance of 2 different tests: 6 repetition maximum (6RM) bench press strength and 40-kg bench throw power in elite junior athletes. Subjects were 26 elite junior male basketball players (n = 12; age = 18.6 +/- 0.3 years; height = 202.0 +/- 11.6 cm; mass = 97.0 +/- 12.9 kg; mean +/- SD) and soccer players (n = 14; age = 17.4 +/- 0.5 years; height = 179.0 +/- 7.0 cm; mass = 75.0 +/- 7.1 kg) with a history of greater than 6 months' strength training. Subjects were initially tested twice for 6RM bench press mass and 40-kg Smith machine bench throw power output (in watts) to establish retest reliability. Subjects then undertook bench press training with 3 sessions per week for 6 weeks, using equal volume programs (24 repetitions x 80-105% 6RM in 13 minutes 20 seconds). Subjects were assigned to one of two experimental groups designed either to elicit repetition failure with 4 sets of 6 repetitions every 260 seconds (RF(4 x 6)) or allow all repetitions to be completed with 8 sets of 3 repetitions every 113 seconds (NF(8 x 3)). The RF(4 x 6) treatment elicited substantial increases in strength (7.3 +/- 2.4 kg, +9.5%, p < 0.001) and power (40.8 +/- 24.1 W, +10.6%, p < 0.001), while the NF(8 x 3) group elicited 3.6 +/- 3.0 kg (+5.0%, p < 0.005) and 25 +/- 19.0 W increases (+6.8%, p < 0.001). The improvements in the RF(4 x 6) group were greater than those in the repetition rest group for both strength (p < 0.005) and power (p < 0.05). Bench press training that leads to repetition failure induces greater strength gains than nonfailure training in the bench press exercise for elite junior team sport athletes.  相似文献   

8.
9.
The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.  相似文献   

10.
The purpose of this investigation was to determine the effects of 2.5 hours of cycling with and without carbohydrate supplementation on gross efficiency (GE). Trained cyclists (N = 15) were tested for V(.-)O2max (53.6 + 2.2 ml x kg(-1) x min(-1)) and lactate threshold during incremental tests to exhaustion. On 2 separate visits, cyclists performed 2.5 hours of cycling on an indoor trainer. A carbohydrate (C) or placebo (P) beverage was randomly provided and counterbalanced for each of the trials. Gross efficiency, cycling economy, power output, V(.-)O2, lactate, and blood glucose were measured every 20 minutes during the 2.5-hour ride. Muscle glycogen was measured immediately before and after the ride from the vastus lateralis. Results indicated that power output and V(.-)O2 decreased over time (p < 0.05) but were not different between trials. Relative GE and cycling economy during C were greater than P at 40 and 150 minutes (p < 0.05). Blood glucose significantly decreased in P and was lower than C at all time points (p < 0.05). Respiratory exchange ratio decreased over time in both trials, with a significant treatment effect at 40 and 150 minutes (p < 0.05). Muscle glycogen decreased by 65% during both conditions (p < 0.05) but demonstrated no treatment effect. We conclude that carbohydrate supplementation during 2.5 hours of cycling attenuated the decrease in GE possibly by maintaining blood glucose levels. This suggests that the positive effect of carbohydrate supplementation on endurance performance may be through the maintenance of metabolic efficiency.  相似文献   

11.
This study examined the effects of dietary restriction on strength gains from whole body resistance training. Comparisons were made between diet-restricted (n = 12) and non-diet-restricted (n = 10) obese women (mean +/- SD, 36.7 +/- 7.0% fat) undergoing identical 8-week resistance training regimens. Diet-restricted subjects reduced their dietary intake by 4200 kJ/day and reduced body mass by 3.9 kg over 8 weeks. Ten-repetition maximum masses were compared between the groups on biweekly intervals. Results indicated no differences between the groups with respect to the rate or magnitude of strength gains for any of the eight exercises. Significant pre- to post-test increases in strength (p less than 0.05) were found for all eight exercises. The rate or magnitude of strength gains induced by resistance training does not appear to be affected by moderate dietary restrictions in obese females.  相似文献   

12.
To compare the effects of 8 weeks of high-resistance circuit (HRC) training (3-6 sets of 6 exercises, 6 repetition maximum [RM], ~35-second interset recovery) and traditional strength (TS) training (3-6 sets of 6 exercises, 6RM, 3-minute interset recovery) on physical performance parameters and body composition, 33 healthy men were randomly assigned to HRC, TS, or a control group. Training consisted of weight lifting 3 times a week for 8 weeks. Before and after the training, 1RM strength on bench press and half squat exercises, bench press peak power output, and body composition (dual x-ray absorptiometry ) were determined. Shuttle run and 30-second Wingate tests were also completed. Upper limb (UL) and lower limb 1RM increased equally after both TS and HRC training. The UL peak power at various loads was significantly higher at posttraining for both groups (p ≤ 0.01). Shuttle-run performance was significantly better after both HRC and TS training, however peak cycling power increased only in TS training (p ≤ 0.05). Significant decreases were found in % body fat in the HRC group only; HRC and TS training both resulted in an increased lean but not bone mass. The HRC training was as effective as TS for improving weight lifting 1RM and peak power, shuttle-run performance and lean mass. Thus, HRC training promoted a similar strength-mass adaptation as traditional training while using a shorter training session duration.  相似文献   

13.
The purpose of this study was to examine the effect of 3 volumes of heavy resistance, average relative training intensity (expressed as a percentage of 1 repetition maximum that represented the absolute kilograms lifted divided by the number of repetitions performed) programs on maximal strength (1RM) in Snatch (Sn), Clean & Jerk (C&J), and Squat (Sq). Twenty-nine experienced (>3 years), trained junior weightlifters were randomly assigned into 1 of 3 groups: low-intensity group (LIG; n = 12), moderate-intensity group (MIG; n = 9), and high-intensity group (HIG; n = 8). All subjects trained for 10 weeks, 4-5 days a week, in a periodized routine using the same exercises and training volume (expressed as total number of repetitions performed at intensities equal to or greater than 60% of 1RM), but different programmed total repetitions at intensities of >90-100% of 1RM for the entire 10-week period: LIG (46 repetitions), MIG (93 repetitions), and HIG (184 repetitions). During the training period, MIG and LIG showed a significant increase (p < 0.01-0.05) for C&J (10.5% and 3% for MIG and LIG, respectively) and Sq (9.5% and 5.3% for MIG and LIG, respectively), whereas in HIG the increase took place only in Sq (6.9%, p < 0.05). A calculation of effect sizes revealed greater strength gains in the MIG than in HIG or LIG. There were no significant differences between LIG and HIG training volume-induced strength gains. All the subjects in HIG were unable to fully accomplish the repetitions programmed at relative intensities greater than 90% of 1RM. The present results indicate that short-term resistance training using moderate volumes of high relative intensity tended to produce higher enhancements in weightlifting performance compared with low and high volumes of high relative training intensities of equal total volume in experienced, trained young weightlifters. Therefore, for the present population of weightlifters, it may be beneficial to use the MIG training protocol to improve the weightlifting program at least in a short-term (10 weeks) cycle of training.  相似文献   

14.
This study examined the effect of 12 weeks of wrist and forearm training on male high school baseball players (mean age = 15.3 +/- 1.1 years). Participants (N = 43) were tested for 10 repetition maximum (RM) wrist barbell flexion, wrist barbell extension, dominant (D) and nondominant (ND) hand-forearm supination, D and ND forearm pronation, D and ND wrist radial deviation, D and ND wrist ulnar deviation, D and ND grip strength, and a 3RM parallel squat (PS) and bench press (BP). Group 1 (n = 23) and group 2 (n = 20), randomly assigned by a stratified sampling technique, performed the same resistance exercises while training 3 days a week for 12 weeks according to a stepwise periodized model. Group 2 also performed wrist and forearm exercises 3 days a week for 12 weeks to determine if additional wrist and forearm training provided further wrist and forearm strength improvements. All wrist and forearm strength variables were measured before and after 12 weeks of training. The 3RM PS and BP were measured at 0 and after 4, 8, and 12 weeks of training. Both groups significantly increased wrist and forearm strength (kg +/- SD) except 10RM D and ND forearm supination for group 1 (p < 0.05). Group 2 showed statistically greater improvements (p < 0.05) in all wrist and forearm strength variables than did group 1 except for D and ND grip strength. Predicted 1RM (kg +/- SD) PS and BP increased significantly (p < 0.05) after weeks 4, 8, and 12 for both groups. These data indicate that a 12-week stepwise periodized training program can significantly increase wrist, forearm, PS, and BP strength for both groups. Additionally, group 2 had further wrist and forearm strength gains.  相似文献   

15.
The purpose of this study was to examine the effects of a drink containing creatine, amino acids, and protein vs. a carbohydrate placebo on body composition, strength, muscular endurance, and anaerobic performance before and after 10 weeks of resistance training. Fifty-one men (mean +/- SD; age: 21.8 +/- 2.9 years) were randomly assigned to either the test drink (TEST; n = 23) or the placebo (PLAC; n = 28) and performed two 30-second Wingate Anaerobic Tests for determination of peak power (PP) and mean power (MP), were weighed underwater for percent body fat (%fat) and fat-free mass (FFM), and were tested for 1 repetition maximum (1RM) dynamic constant external resistance strength and muscular endurance (END; number of repetitions performed with 80% of 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. The testing was conducted before (PRE) and after (POST) 10 weeks of resistance training (3 sets of 10 repetitions with 80% of the subject's 1RM performed 3 times per week) on the LE and BP exercises. Body weight, FFM, LE 1RM, LE END, BP 1RM, and BP END increased (p < 0.05), whereas %fat decreased (p < 0.05) from PRE to POST for both the TEST and PLAC groups. Peak power and MP, however, increased for the TEST group, but not for the PLAC group. These results suggested that the creatine-, amino acid-, and protein-containing drink provided no additional benefits when compared with carbohydrates alone for eliciting changes in body composition, strength, and muscular endurance after a 10-week resistance training period. The TEST drink was, however, more effective than carbohydrates alone for improving anaerobic power production.  相似文献   

16.
This paper examines the validity of the heart rate deflection point (HRDP) obtained with the "updated" Conconi test. Eleven male road cyclists performed 2 progressive incremental cycling tests and a 30-minute prolonged exercise test (PET). From the data obtained, comparisons were made and correlation coefficients were calculated between HRDP, the lactate threshold (LT), and the 3 mmol.L(-1) threshold (AT3). The PET at HRDP demonstrated whether or not a steady state in blood lactate concentration (BLaSS) could be maintained. Significantly lower values for power output (p < 0.01) and heart rate (HR) (p < 0.01) were found at LT compared with HRDP. No differences were found between HRDP and AT3. Only a moderate correlation for power output between HRDP and AT3 (rs = 0.69; p < 0.05) could be observed. During the PET, only 6 out of 11 cyclists reached the target time of 30 minutes, and only 4 cyclists maintained a BLaSS. We conclude that the updated Conconi test is not a valid method for assessing LT or AT3. Therefore, this method seems not suitable to evaluate endurance performance and prescribe exercise intensities in road cycling.  相似文献   

17.
The purpose of this study was to compare the effects of single- and multiple-set strength training on hypertrophy and strength gains in untrained men. Twenty-one young men were randomly assigned to either the 3L-1UB group (trained 3 sets in leg exercises and 1 set in upper-body exercises; n = 11), or the 1L-3UB (trained 1 set in leg exercises and 3 sets in upper-body exercises; n = 10). Subjects trained 3 days per week for 11 weeks and each workout consisted of 3 leg exercises and 5 upper-body exercises. Training intensity varied between 10 repetition maximum (RM) and 7RM. Strength (1RM) was tested in all leg and upper-body exercises and in 2 isokinetic tests before training, and after 3, 6, 9, and 11 weeks of training. Cross sectional area (CSA) of thigh muscles and the trapezius muscle and body composition measures were performed before training, and after 5 and 11 weeks of training. The increase in 1RM from week 0 to 11 in the lower-body exercises was significantly higher in the 3L-1UB group than in the 1L-3UB group (41 vs. 21%; p < 0.001), while no difference existed between groups in upper-body exercises. Peak torque in maximal isokinetic knee-extension and thigh CSA increased more in the 3L-1UB group than in the 1L-3UB group (16 vs. 8%; p = 0.03 and 11 vs. 7%; p = 0.01, respectively), while there was no significant difference between groups in upper trapezius muscle CSA. The results demonstrate that 3-set strength training is superior to 1-set strength training with regard to strength and muscle mass gains in the leg muscles, while no difference exists between 1- and 3-set training in upper-body muscles in untrained men.  相似文献   

18.
Strength training often combines closed-kinetic-chain exercises (CKCEs) and open kinetic-chain exercises (OKCEs). The CKCE may be more effective for improving performance in lower-body training. Recently, we reported upper-body CKCE (using a commercially available system of ropes and slings, Redcord AS, Staubo, Norway) was as effective as OKCE training for strength gains and that CKCE was more effective than OKCE for improving throwing performance. To our knowledge the effectiveness of a strength training program that uses exclusively CKCE is unknown. In this study, we examined the effectiveness of CKCE vs. OKCE strength training programs in women enrolled in an introductory strength training program. Twenty-six participants were randomized to OKCE (traditional exercises) or CKCE (sling-based exercises). Participants completed 6 sets per week for 13 weeks. Pre and posttraining evaluations included the following: 1 repetition maximum (1RM) leg and bench press; sling exercise push-ups; isokinetic dynamometry; lateral step-down test; and the Star Excursion Balance Test. Both groups significantly improved bench press (by an average of 4-6 kg) and leg press (by an average of 23-35 kg) (p < 0.001). There was a significant group × time interaction (p < 0.001) for sling exercise push-ups (OKCE pre = 5.5 ± 8.6, OKCE post = 6.1 ± 8.2, CKCE pre = 6.8 ± 6.0, CKCE post = 16.9 ± 6.6). Isokinetic measures of knee extension, knee flexion, shoulder internal rotation, and shoulder external rotation increased (improvements ranged from 2.7 to 27.7%), with no group differences. Both OKCE and CKCE strength training elicited similar changes in balance. We conclude that CKCE training is equally as effective as OKCE training during the initial phases of a strength training program in women. The fact that only CKCE improved sling exercise push-ups supports previous findings suggesting functional superiority of CKCE.  相似文献   

19.
Twenty-six active university students were randomly allocated to resistance (R, n = 9), endurance (E, n = 8), and concurrent resistance and endurance (C, n = 9) training conditions. Training was completed 3 times per week in all conditions, with endurance training preceding resistance training in the C group. Resistance training involved 4 sets of upper- and lower-body exercises with loads of 4-8 repetition maximum (RM). Each endurance training session consisted of five 5-minute bouts of incremental cycle exercise at between 40 and 100% of peak oxygen uptake (.VO2peak). Parameters measured prior to and following training included strength (1RM and isometric and isokinetic [1.04, 3.12, 5.20, and 8.67 rad.s(-1)] strength), .VO2peak and Wingate test performance (peak power output [PPO], average power, and relative power decline). Significant improvements in 1RM strength were observed in the R and C groups following training. .VO2peak significantly increased in E and C but was significantly reduced in R after training. Effect size (ES) transformations on the other dependent variables suggested that performance changes in the C group were not always similar to changes in the R or E groups. These ES data suggest that statistical power and dependent variable selection are significant issues in enhancing our insights into concurrent training. It may be necessary to assess a range of performance parameters to monitor the relative effectiveness of a particular concurrent training regimen.  相似文献   

20.
Some research suggests that strength improvements are greater when resistance training continues to the point at which the individual cannot perform additional repetitions (i.e., repetition failure). Performing additional forced repetitions after the point of repetition failure and thus further increasing the set volume is a common resistance training practice. However, whether short-term use of this practice increases the magnitude of strength development with resistance training is unknown and was investigated here. Twelve basketball and 10 volleyball players trained 3 sessions per week for 6 weeks, completing either 4 x 6, 8 x 3, or 12 x 3 (sets x repetitions) of bench press per training session. Compared with the 8 x 3 group, the 4 x 6 protocol involved a longer work interval and the 12 x 3 protocol involved higher training volume, so each group was purposefully designed to elicit a different number of forced repetitions per training session. Subjects were tested on 3- and 6-repetition maximum (RM) bench press (81.5 +/- 9.8 and 75.9 +/- 9.0 kg, respectively, mean +/- SD), and 40-kg Smith Machine bench press throw power (589 +/- 100 W). The 4 x 6 and 12 x 3 groups had more forced repetitions per session (p < 0.01) than did the 8 x 3 group (4.1 +/- 2.6, 3.1 +/- 3.5, and 1.2 +/- 1.8 repetitions, respectively), whereas the 12 x 3 group performed approximately 40% greater work and had 30% greater concentric time. As expected, all groups improved 3RM (4.5 kg, 95% confidence limits, 3.1- 6.0), 6RM (4.7 kg, 3.1-6.3), bench press throw peak power (57 W, 22-92), and mean power (23 W, 4-42) (all p < or = 0.02). There were no significant differences in strength or power gains between groups. In conclusion, when repetition failure was reached, neither additional forced repetitions nor additional set volume further improved the magnitude of strength gains. This finding questions the efficacy of adding additional volume by use of forced repetitions in young athletes with moderate strength training experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号