首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Exercise-induced hypoxaemia (EIH) in master athletes may be related to a diminished exercise hyper- pnoea. The aim of this study was to determine whether EIH is associated with a change in the sensitivity of the ventilation response to activation of the central chemoreceptors. The ventilation response to CO2 was measured in nine elderly untrained men (UT) [mean age 66.3 (SEM 3.1) years] and nine master athletes (MA) [mean age 62.7 (SEM 0.8) years] at rest, during moderate exercise (40% maximal oxygen uptake, O2max), and during strenuous exercise (70% O2max) using the rebreathing method. Our results showed that the ventilation response to CO2 did not differ with endurance training and/or exercise, that the threshold of the CO2 response (Th) increased with exercise (P < 0.001), that the increase in Th in MA was higher than in UT between rest and moderate exercise [ΔTh0–40: 8.55 (SEM 1.8) vs 3.06 (SEM 1.72) mmHg, P < 0.05], and that ΔTh0–40 and Th during moderate exercise were negatively correlated with arterial O2 saturation during maximal exercise (r = 0.50, P<0.05). We concluded therefore that exercise-induced hypoxaemia in master athletes may not be due to a lower ventilation response to CO2, but may be partly related to a greater increase in Th during moderate exercise. Accepted: 18 August 1997  相似文献   

2.
The purpose of this study was to assess the magnitude of upper and lower body strength changes in highly trained professional rugby union players after 2 years of training. An additional purpose was to examine if the changes in strength were influenced by the starting strength level, lean mass index (LMI), or chronological age. This longitudinal investigation tracked maximal strength and body composition over 3 consecutive years in 20 professional rugby union athletes. Maximal strength in the bench press and back squat and body composition was assessed during preseason resistance training sessions each year. The athletes completed a very rigorous training program throughout the duration of this study consisting of numerous resistance, conditioning and skills training sessions every week. The primary findings of this study were as follows: (a) Maximal upper and lower body strength was increased by 6.5-11.5% after 2 years of training (p = 0.000-0.002 for bench press; p = 0.277-0.165 for squat); (b) magnitude of the improvement was negatively associated with initial strength level (r = -0.569 to -0.712, p ≤ 0.05); (c) magnitude of improvement in lower body maximal strength was positively related to the change in LMI (an indicator of hypertrophy; r = 0.692-0.880, p ≤ 0.05); and (d) magnitude of improvement was not associated with the age of professional rugby union athletes (r = -0.068 to -0.345). It appears particularly important for training programs to be designed for continued muscle hypertrophy in highly trained athletes. Even in professional rugby union athletes, this must be achieved in the face of high volumes of aerobic and skills training if strength is to be increased.  相似文献   

3.
Many older athletes are capable of endurance performances equal to those of young runners who have higher maximal O2 uptakes (VO2max). To determine whether this is a result of differences in skeletal muscle characteristics, gastrocnemius muscle biopsy samples were obtained from eight master athletes [aged 63 +/- 6 (SD) yr] and eight young (aged 26 +/- 3 yr) runners. The young runners were matched with the master athletes for 10-km running performance and for their volume, pace, and type of training. Despite similar 10-km run times, VO2max was 11% lower (P less than 0.05) in the master athletes. Fiber type distribution did not differ between groups, with both groups having 60% type I and very few type IIb fibers. Succinate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase activities, however, were 31 and 24% higher in the master athletes compared with the matched young runners, whereas lactate dehydrogenase activity was 46% lower (all P less than 0.05). The capillary-to-fiber ratio was also greater in the master athletes; however, capillary density was similar in the two groups, because of the master athletes' 34% larger (P less than 0.05) type I fibers. These differences in skeletal muscle characteristics may explain the master athletes' ability to perform as well as some young runners despite having a lower VO2max.  相似文献   

4.
Recent reports suggest that hypovitaminosis D in athletes is as common as in the general population. This study was devised to examine vitamin D status and determinants of deficiency in athletes living in a sunny country (Tunisia). One hundred and fifty national elite athletes, training outdoors (n = 83) or indoors (n = 67), were enrolled from January to February 2012. Plasma 25-hydroxyvitamin D was measured by radioimmunoassay. Concentrations were between 50 and 75 nmol · l-1 in 21.3% of participants, between 25 and 50 nmol · l-1 in 55.3% of participants and <25 nmol · l-1 in 14.7% of participants. The concentrations were significantly lower in indoor athletes than outdoor athletes (36.2±19.0 nmol · l-1 vs. 49.1±19.2 nmol · l-1; p < 0.001). In multivariate analysis, vitamin D deficiency (25-hydroxyvitamin D <50 nmol · l-1) was associated with indoor sports [multi-adjusted odds ratio (95% confidence interval), 5.03 (1.64-15.4); p = 0.005], female gender [3.72 (1.44-9.65); p = 0.007] and age < 18 years [2.40 (1.01-5.85); p = 0.05]. Athletes living in sun-rich environments are exposed to a high risk of vitamin D inadequacy. Given the importance of vitamin D in health and athletic ability, targeting sufficient levels of plasma 25-hydroxyvitamin D in athletes is well justified.  相似文献   

5.
ABSTRACT: Comfort, P, Fletcher, C, and McMahon, JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res 26(11): 2970-2974, 2012-Although previous research has been performed in similar areas of study, the optimal load for the development of peak power during training remains controversial, and this has yet to be established in collegiate level athletes. The purpose of this study was to determine the optimal load to achieve peak power output during the power clean in collegiate athletes. Nineteen male collegiate athletes (age 21.5 ± 1.4 years; height 173.86 ± 7.98 cm; body mass 78.85 ± 8.67 kg) performed 3 repetitions of power cleans, while standing on a force platform, using loads of 30, 40, 50, 60, 70, and 80% of their predetermined 1-repetition maximum (1RM) power clean, in a randomized, counterbalanced order. Peak power output occurred at 70% 1RM (2,951.7 ± 931.71 W), which was significantly greater than the 30% (2,149.5 ± 406.98 W, p = 0.007), 40% (2,201.0 ± 438.82 W, p = 0.04), and 50% (2,231.1 ± 501.09 W, p = 0.05) conditions, although not significantly different when compared with the 60 and 80% 1RM loads. In addition, force increased with an increase in load, with peak force occurring at 80% 1RM (1,939.1 ± 320.97 N), which was significantly greater (p < 0.001) than the 30, 40, 50, and 60% 1RM loads but not significantly greater (p > 0.05) than the 70% 1RM load (1,921.2 ± 345.16 N). In contrast, there was no significant difference (p > 0.05) in rate of force development across loads. When training to maximize force and power, it may be advantageous to use loads equivalent to 60-80% of the 1RM, in collegiate level athletes.  相似文献   

6.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

7.
This study examined the cardiac structure and function of a unique cohort of documented lifelong, competitive endurance veteran athletes (>50 yr). Twelve lifelong veteran male endurance athletes [mean ± SD (range) age: 56 ± 6 yr (50-67)], 20 age-matched veteran controls [60 ± 5 yr; (52-69)], and 17 younger male endurance athletes [31 ± 5 yr (26-40)] without significant comorbidities underwent cardiac magnetic resonance (CMR) imaging to assess cardiac morphology and function, as well as CMR imaging with late gadolinium enhancement (LGE) to assess myocardial fibrosis. Lifelong veteran athletes had smaller left (LV) and right ventricular (RV) end-diastolic and end-systolic volumes (P < 0.05), but maintained LV and RV systolic function compared with young athletes. However, veteran athletes had a significantly larger absolute and indexed LV and RV end-diastolic and systolic volumes, intraventricular septum thickness during diastole, posterior wall thickness during diastole, and LV and RV stroke volumes (P < 0.05), together with significantly reduced LV and RV ejection fractions (P < 0.05), compared with veteran controls. In six (50%) of the veteran athletes, LGE of CMR indicated the presence of myocardial fibrosis (4 veteran athletes with LGE of nonspecific cause, 1 probable previous myocarditis, and 1 probable previous silent myocardial infarction). There was no LGE in the age-matched veteran controls or young athletes. The prevalence of LGE in veteran athletes was not associated with age, height, weight, or body surface area (P > 0.05), but was significantly associated with the number of years spent training (P < 0.001), number of competitive marathons (P < 0.001), and ultraendurance (>50 miles) marathons (P < 0.007) completed. An unexpectedly high prevalence of myocardial fibrosis (50%) was observed in healthy, asymptomatic, lifelong veteran male athletes, compared with zero cases in age-matched veteran controls and young athletes. These data suggest a link between lifelong endurance exercise and myocardial fibrosis that requires further investigation.  相似文献   

8.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

9.
The purposes of this study were to compare the lower-body flexibility, strength, and knee stability of karate athletes against that of non-karate controls and to determine whether regular karate training results in adaptations that may result in an increased risk for knee injury. Flexibility measurements included knee flexion and extension, hip flexion and extension, hip internal and external rotation, and foot inversion and eversion. Nine karate athletes (4 women and 5 men, age = 24.3 +/- 6.7 years) and 15 active, non-karate controls (7 women and 8 men, age = 22.1 +/- 3.2 years) participated. No subjects reported recent knee surgery or chronic or acute knee pain. Concentric quadriceps and hamstrings strength and endurance were measured using a Biodex II isokinetic dynamometer at 60 degrees .s(-1) and 180 degrees .s(-1). Eccentric strength was measured at 150 degrees .s(-1) and 250 ft-lb (339 N.m). Knee stability was measured via varus and valgus stress and anterior drawer testing. Karate athletes demonstrated a significantly greater right hip flexion (p 相似文献   

10.
This study compared the activation pattern and the fatigue rate among the superficial muscles of the quadriceps femoris (QF) during severe cycling exercise. Peak oxygen consumption (VO(2)peak) and maximal accumulated oxygen Deficit (MAOD) were established by 10 well-trained male cyclists (27.5 ± 4.1 years, 71.0 ± 10.3 kg, 173.4 ± 6.6 cm, mean VO(2)peak 56.7 ± 4.4 ml·kg·min(-1), mean MAOD 5.7 ± 1.1 L). Muscle activity (electromyographic [EMG] signals) was obtained during the supramaximal constant workload test (MAOD) and expressed by root mean square (RMS) and median frequency (MF slope). The RMS of the QF, vastus lateralis (VL) and vastus medialis (VM) muscles were significantly higher than at the beginning after 75% of exercise duration, whereas for the rectus femoris (RF), this was observed after 50% of exercise duration (p ≤ 0.05). The slope of the MF was significantly higher in the RF, followed by the VL and VM (-3.13 ± 0.52 vs. -2.61 ± 0.62 vs. -1.81 ±0.56, respectively; p < 0.05). We conclude that RF may play an important role in limiting performance during severe cycling exercise.  相似文献   

11.
The aim of this study was to investigate the effects of concurrent training on endurance capacity and dynamic neuromuscular economy in elderly men. Twenty-three healthy men (65 ± 4 years) were divided into 3 groups: concurrent (CG, n = 8), strength (SG, n = 8), and aerobic training group (EG, n = 7). Each group trained 3 times a week for 12 weeks, strength training, aerobic training, or both types of training in the same session. The maximum aerobic workload (Wmax) and peak oxygen uptake (VO2peak) of the subjects were evaluated on a cycle ergometer before and after the training period. Moreover, during the maximal test, muscle activation was measured at each intensity by means of electromyographic signals from the vastus lateralis (VL), rectus femoris (RF), biceps femoris long head, and gastrocnemius lateralis to determine the dynamic neuromuscular economy. After training, significant increases in VO2peak and Wmax were only found in the CG and EG (p < 0.05), with no difference between groups. Moreover, there was a significant decrease in myoelectric activity of the RF muscle at 50 (EG), 75 and 100 W (EG and CG) and in the VL for the 3 groups at 100 W (p < 0.05). No change was seen in the electrical signal from the lateral gastrocnemius muscle and biceps femoris. The results suggest specificity in adaptations investigated in elderly subjects, because the most marked changes in the neuromuscular economy occurred in the aerobically trained groups.  相似文献   

12.
A variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting). The effects these protocols have on acceleration performance and components of sprint technique have not been clearly defined in the literature. This study assessed 4 common protocols (free sprint training [FST], weight training [WT], plyometric training [PT], and resisted sprint training [RST]) for changes in acceleration kinematics, power, and strength in field sport athletes. Thirty-five men were divided into 4 groups (FST: n = 9; WT: n = 8; PT: n = 9; RST: n = 9) matched for 10-m velocity. Training involved two 60-minute sessions per week for 6 weeks. After the interventions, paired-sample t-tests identified significant (p ≤ 0.05) within-group changes. All the groups increased the 0- to 5-m and 0- to 10-m velocity by 9-10%. The WT and PT groups increased the 5- to 10-m velocity by approximately 10%. All the groups increased step length for all distance intervals. The FST group decreased 0- to 5-m flight time and step frequency in all intervals and increased 0- to 5-m and 0- to 10-m contact time. Power and strength adaptations were protocol specific. The FST group improved horizontal power as measured by a 5-bound test. The FST, PT, and RST groups all improved reactive strength index derived from a 40-cm drop jump, indicating enhanced muscle stretch-shortening capacity during rebound from impacts. The WT group increased absolute and relative strength measured by a 3-repetition maximum squat by approximately 15%. Step length was the major limiting sprint performance factor for the athletes in this study. Correctly administered, each training protocol can be effective in improving acceleration. To increase step length and improve acceleration, field sport athletes should develop specific horizontal and reactive power.  相似文献   

13.
The purpose of this study was to determine the effects of acute heat exposure upon muscular strength, muscular endurance, and muscular power in euhydrated athletes. Ten healthy, weight-trained men (average age = 23.0 +/- 4.0 years) volunteered for this investigation. Subjects were randomized to normothermic (22.5 degrees C, 65% relative humidity [RH]) or hyperthermic (65-75 degrees C, 15% RH) condition for 30 minutes. Results indicated that all subjects experienced significant (p < 0.05) hemodynamic stress because of the 30 minutes of heat exposure (blood pressure [BP](rest) 124/78 mm Hg to BP(postsauna) 148/60 mm Hg, heart rate [HR](rest) 64 b.min(-1) to HR(postsauna) 122 b.min(-1)). Oral and tympanic temperature measurements correlated strongly (r(2) = 0.904) and increased by 2.48 and 2.71 degrees C, respectively, during sauna exposure. One repetition maximum (1RM) bench press strength did not differ between the 2 conditions, whereas 1RM leg press strength was significantly decreased (p < 0.05) after the hyperthermic protocol. Subjects' muscular endurance decreased significantly (p < 0.05) in both the leg press (29.2%) and bench press (15.8%) after the sauna exposure. In contrast, muscular power (vertical jump) increased significantly (3.1%, p < 0.5) after acute heat exposure. In agreement with previous studies, we concluded that acute heat exposure is detrimental to muscular endurance; however, the areas of strength and power are far less unequivocal.  相似文献   

14.
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.  相似文献   

15.
A.  D.  E.  K.  E.  C.   《Journal of electromyography and kinesiology》2006,16(6):661-668
The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3 ± 2.5 years) performed 25 maximal (MIFP) and 60 submaximal (SIFP) isokinetic concentric efforts of the knee extensors at 60° s−1, across a 90° range of motion. The two protocols were performed a week apart. The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) were recorded using surface electrodes. The peak torque (PT) and average EMG (aEMG) were expressed as percentages of pre-fatigue maximal value. One-way analysis of variance indicated a significant (p < 0.05) decline of PT during the maximal (45.7%) and submaximal (46.8%) protocols. During the maximal test, the VM and VL aEMG initially increased and then decreased. In contrast, VM and VL aEMG continuously increased during submaximal testing (p < 0.05). The antagonist (BF) aEMG remained constant during maximal test but it increased significantly and then declined during the submaximal testing. The above results indicate that agonist and antagonist activity depends on the intensity of the selected isokinetic fatigue test.  相似文献   

16.
Decline in VO2max with aging in master athletes and sedentary men   总被引:1,自引:0,他引:1  
Fifteen well-trained master endurance athletes [62.0 +/- 2.3 (SE) yr] and 14 sedentary control subjects (61.4 +/- 1.4 yr) were reevaluated after an average follow-up period of approximately 8 yr to obtain information regarding the effects of physical activity on the age-related decline in maximal O2 uptake capacity (VO2max). The master athletes had been training for 10.2 +/- 2.9 yr before initial testing and continued to train during the follow-up period. The sedentary subjects' VO2max declined by an average of 3.3 ml.kg-1.min-1 (33.9 +/- 1.7 vs. 30.6 +/- 1.6, P less than 0.001) over the course of the study, a decline of 12% per decade. In these subjects maximal heart rate declined 8 beats/min (171 vs. 163) and maximal O2 pulse decreased from 0.20 to 0.18 ml.kg-1.beat (P less than 0.05). The master athletes' VO2 max decreased by an average of 2.2 ml.kg-1.min-1 (54.0 +/- 1.7 vs. 51.8 +/- 1.8, P less than 0.05), a 5.5% decline per decade. The master athletes' maximal heart rate was unchanged (171 +/- 3 beats/min) and their maximal O2 pulse decreased from 0.32 to 0.30 ml.kg-1.beat (P less than 0.05). These findings provide evidence that the age-related decrease in VO2max of master athletes who continue to engage in regular vigorous endurance exercise training is approximately one-half the rate of decline seen in age-matched sedentary subjects. Furthermore our results suggest that endurance exercise training may reduce the rate of decline in maximal heart rate that typically occurs as an individual ages.  相似文献   

17.
The effects of heavy resistance exercise on skeletal muscle androgen receptor (AR) protein concentration and mRNAs of AR, insulin-like growth factor-I (IGF)-IEa, and mechano growth factor (MGF) expression were examined from biopsies of vastus lateralis (VL) muscle before and 48 hours after heavy resistance exercise (5 × 10 repetition maximum [RM] leg press and 4 × 10RM squats) in 8 adult strength trained men. The present exercise induced an acute decrease in maximal isometric force and increased serum total testosterone (T) and free testosterone (FT) concentrations. During 2 recovery days, maximal isometric force and subjective perception of physical fitness remained significantly lowered, whereas serum creatine kinase activity, subjective muscle soreness, and muscle swelling (i.e., thickness of VL by ultrasound) were significantly increased compared to pre-exercise values. Subjective perception of physical fitness was followed up to 7 days, and by 6 days postexercise, it was elevated above the pre-exercise level. Basal T and FT concentrations remained unaltered after the exercise. No statistically significant changes were observed in AR protein or mRNA expression, but IGF-IEa (p < 0.05) and MGF (p < 0.05) mRNA expression were increased compared to pre-exercise levels. These findings indicate that IGF-IEa and MGF responses may be related to acute regenerative processes in muscle because of exercise and may contribute to muscular adaptation to resistance exercise. Subjective perception of physical fitness suggests that recovery over a pre-exercise level of the present type of heavy resistance exercise can take approximately 6 days.  相似文献   

18.
Our study purpose examined salivary hormonal responses to high-speed resistive exercise. Healthy subjects (n = 45) performed 2 elbow flexor workouts on a novel (inertial kinetic exercise; Oconomowoc, WI, USA) strength training device. Our methods included saliva sample collection at both preexercise and immediately postexercise; workouts entailed two 60-second sets separated by a 90-second rest period. The samples were analyzed in duplicate for their testosterone and cortisol concentrations ([T], [C]). Average and maximum elbow flexor torque were measured from each exercise bout; they were later analyzed with a 2(gender) × 2(workout) analysis of variance (ANOVA) with repeated measures for workout. The [T] and [C] each underwent a 2(gender) × 2(time) ANOVA with repeated measures for time. A within-subject design was used to limit error variance. Average and maximum torque each had gender (men > women; p < 0.05) effects. The [T] elicited a 2-way interaction (p < 0.05), as men incurred a significant 14% increase over time, but women's values were unchanged. Yet multivariate regression revealed that 3 predictor variables (body mass and average and maximum torques) did not account for a significant amount of variance associated with the rise in male [T]. Changes in [C] were not significant. In conclusion, changes in [T] concur with the results from other studies that showed significant elevations in male [T], despite the brevity of current workouts and the rather modest volume of muscle mass engaged. Practical applications imply that salivary assays may be a viable alternative to blood draws from athletes, yet coaches and others who may administer this treatment should know that our results may have produced greater pre-post hormonal changes if postexercise sample collection had occurred at a later time point.  相似文献   

19.
Functional severity in ankylosing spondylitis (AS) patients is variable and difficult to predict early. The aim of our study was to assess whether a combination of baseline clinical factors and genetic markers may predict the development of severe functional status in AS. We performed a cross-sectional association study on AS patients included in the Spanish National Registry of Spondyloarthropathies—REGISPONSER. Bath Ankylosing Spondylitis Functional Index (BASFI) was standardized by adjusting for disease duration since the first symptoms (BASFI/t). We considered as severe functional status the values of BASFI/t in the top of the 60th (p60), 65th (p65), 70th (p70), and 75th (p75) percentile. We selected 384 single nucleotide polymorphisms (SNPs) distributed in 190 genes to be analyzed. The study cohort included 456 patients with mean age 50.8(±10.5) years and with mean disease duration since first symptoms 24.7 (±10.1) years. Older age at disease onset and neck pain at baseline showed statistical significant association with severe BASFI/t. Polymorphisms associated in the allele frequencies test with severe BASFI/t in all classifications were: rs2542151 (p60 [P = .04], p65 [P = .04], p70 [P = .001] and p75 [P = .001]) and rs2254441 (p60 [P = .004], p65 [P = .02], p70 [P = .01] and p75 [P<.001]).. Genotype association, after adjustment for covariates, found an association in three of the four patients'' classifications for rs2542151 and in two of the classifications for rs2254441.Forward logistic regression did not identify any model with a good predictive power for severe functional development.In our study we identified clinical factors and 24 polymorphisms associated with development of severe functional status in AS patients. Validation of these results in other cohorts is required.  相似文献   

20.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号