首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Research suggests that static stretching can negatively influence muscle strength and power and may result in decreased functional performance. The dynamic warm-up (DWU) is a common alternative to static stretching before physical activity, but there is limited research investigating the effects of a DWU. The purpose of this study was to compare the acute effects of a DWU and static stretching warm-up (SWU) on muscle flexibility, strength, and vertical jump using a randomized controlled trial design. Forty-five volunteers were randomly assigned into a control (CON), SWU, or DWU group. All participants rode a stationary bicycle for 5 minutes and completed a 10-minute warm-up protocol. During this protocol, the DWU group performed dynamic stretching and running, the SWU group performed static stretching, and the CON group rested. Dependent variables were measured immediately before and after the warm-up protocol. A digital inclinometer measured flexibility (degrees) for the hamstrings, quadriceps, and hip flexor muscles. An isokinetic dynamometer measured concentric and eccentric peak torque (N·m/kg) for the hamstrings and quadriceps. A force plate was used to measure vertical jump height (meters) and power (watts). In the DWU group, there was a significant increase in hamstring flexibility (pretest: 26.4 ± 13.5°, posttest: 16.9 ± 9.4°; p < .0001) and eccentric quadriceps peak torque (pretest: 2.49 ± 0.83 N·m/kg, posttest: 2.78 ± 0.69 N·m/kg; p = 0.04). The CON and SWU did not significantly affect any flexibility, strength, or vertical jump measures (p > 0.05). The DWU significantly improved eccentric quadriceps strength and hamstrings flexibility, whereas the SWU did not facilitate any positive or negative changes in muscle flexibility, strength, power, or vertical jump. Therefore, the DWU may be a better preactivity warm-up choice than an SWU.  相似文献   

2.
Despite full voluntary effort, neuromuscular activation of the quadriceps femoris muscle appears inhibited during slow concentric and eccentric contractions. Our aim was to compare neuromuscular activation during maximal voluntary concentric and eccentric quadriceps contractions, hypothesizing that inhibition of neuromuscular activation diminishes with resistance training. In 15 men, pretraining electromyographic activity of the quadriceps muscles [vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] was 17-36% lower during slow and fast (30 and 240 degrees/s) eccentric and slow concentric contractions compared with fast concentric contractions. After 14 wk of heavy resistance training, neuromuscular inhibition was reduced for VL and VM and was completely removed for RF. Concurrently, electromyographic activity increased 21-52, 22-29, and 16-32% for VL, VM, and RF, respectively. In addition, median power frequency decreased for VL and RF. Eccentric quadriceps strength increased 15-17%, whereas slow and fast concentric strength increased 15 and 8%, respectively. Pre- and posttraining median power frequency did not differ between eccentric and concentric contractions. In conclusion, quadriceps motoneuron activation was lower during maximal voluntary eccentric and slow concentric contractions compared with during fast concentric contraction in untrained subjects, and, after heavy resistance training, this inhibition in neuromuscular activation was reduced.  相似文献   

3.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The purpose of this study was to examine the influence of the sequence order of high-intensity endurance training and circuit training on changes in muscular strength and anaerobic power. Forty-eight physical education students (ages, 21.4 +/- 1.3 years) were assigned to 1 of 5 groups: no training controls (C, n = 9), endurance training (E, n = 10), circuit training (S, n = 9), endurance before circuit training in the same session, (E+S, n = 10), and circuit before endurance training in the same session (S+E, n = 10). Subjects performed 2 sessions per week for 12 weeks. Resistance-type circuit training targeted strength endurance (weeks 1-6) and explosive strength and power (weeks 7-12). Endurance training sessions included 5 repetitions run at the velocity associated with Vo2max (Vo2max) for a duration equal to 50% of the time to exhaustion at Vo2max; recovery was for an equal period at 60% Vo2max. Maximal strength in the half squat, strength endurance in the 1-leg half squat and hip extension, and explosive strength and power in a 5-jump test and countermovement jump were measured pre- and post-testing. No significant differences were shown following training between the S+E and E+S groups for all exercise tests. However, both S+E and E+S groups improved less than the S group in 1 repetition maximum (p < 0.01), right and left 1-leg half squat (p < 0.02), 5-jump test (p < 0.01), peak jumping force (p < 0.05), peak jumping power (p < 0.02), and peak jumping height (p < 0.05). The intrasession sequence did not influence the adaptive response of muscular strength and explosive strength and power. Circuit training alone induced strength and power improvements that were significantly greater than when resistance and endurance training were combined, irrespective of the intrasession sequencing.  相似文献   

5.
Changes in strength, body composition and anthropometric measures for groups training with constant resistance and variable resistance training procedures was compared. Thirty-six male volunteers were randomly assigned to one of three groups: Constant Resistance (CR), Variable Resistance (VR) and Control (C). Strength training was conducted 3 days per week, 45 min per day, for 10 weeks. The results demonstrated that both the CR and the VR groups increased muscular strength. The CR group demonstrated significant increases in strength over the VR group when strength was assessed by CR procedures. Conversely, the VR group demonstrated significant increases in strength over the CR group when strength was assessed by VR procedures. Neither group exhibited superiority over the other relative to changes in body composition and anthropometric measures. The significance of these results is discussed.  相似文献   

6.
Studies using animal models have been unable to determine the mechanical stimuli that most influence muscle architectural adaptation. We examined the influence of contraction mode on muscle architectural change in humans, while also describing the time course of its adaptation through training and detraining. Twenty-one men and women performed slow-speed (30 degrees /s) concentric-only (Con) or eccentric-only (Ecc) isokinetic knee extensor training for 10 wk before completing a 3-mo detraining period. Fascicle length of the vastus lateralis (VL), measured by ultrasonography, increased similarly in both groups after 5 wk (Delta(Con) = +6.3 +/- 3.0%, Delta(Ecc) = +3.1 +/- 1.6%, mean = +4.7 +/- 1.7%; P < 0.05). No further increase was found at 10 wk, although a small increase (mean approximately 2.5%; not significant) was evident after detraining. Fascicle angle increased in both groups at 5 wk (Delta(Con) = +11.1 +/- 4.0%, Delta(Ecc) = +11.9 +/- 5.4%, mean = 11.5 +/- 3.2%; P < 0.05) and 10 wk (Delta(Con) = +13.3 +/- 3.0%, Delta(Ecc) = +21.4 +/- 6.9%, mean = 17.9 +/- 3.7%; P < 0.01) in VL only and remained above baseline after detraining (mean = 13.2%); smaller changes in vastus medialis did not reach significance. The similar increase in fascicle length observed between the training groups mitigates against contraction mode being the predominant stimulus. Our data are also strongly indicative of 1) a close association between VL fascicle length and shifts in the torque-angle relationship through training and detraining and 2) changes in fascicle angle being driven by space constraints in the hypertrophying muscle. Thus muscle architectural adaptations occur rapidly in response to resistance training but are strongly influenced by factors other than contraction mode.  相似文献   

7.
Quadriceps strength is a vital component to lower extremity function and is often the focus in resistance training interventions and injury rehabilitation. Electromyographic biofeedback (EMGBF) is frequently used to supplement strength gains; however, the true effect remains unknown. Therefore, the objective of this investigation was to determine the magnitude of the treatment effect for EMGBF on quadriceps strength compared with that of placebo and traditional exercise interventions in both healthy and pathological populations. Web of Science and ProQuest databases were searched, and bibliographies of relevant articles were crossreferenced. Six articles measuring isometric quadriceps strength in response to EMGBF training were included and methodologically assessed using the Physiotherapy Evidence Database (PEDro). Standardized effect sizes with 95% confidence intervals (CIs) were calculated from preintervention and postintervention measures for EMGBF, placebo, and exercise-only interventions. Separate comparisons were made between studies assessing different intervention length (<4 and ≥4 weeks) and patient populations (pathological and healthy). Articles included received an average PEDro score of 6.5 ± 0.84. Homogeneous EMGBF effect sizes were found in all 6 studies (d = 0.01-5.56), with 4 studies reporting CI that crossed 0. A heterogeneous collection of effect sizes was found for exercise alone (d = -0.12 to 1.18) and placebo (d = -0.2 to 1.38), with 4 and 1 studies having a CI that crossed 0, respectively. The greatest EMGBF effects were found in pathological populations (d = 0.01-5.56), with the strongest effect found in the subjects with knee osteoarthritis (d = 5.56, CI = 4.26-6.68). As a group, effects were the strongest for EMGBF compared with that of placebo and exercise-only interventions, yet definitive evidence that EMGBF is beneficial for increasing quadriceps strength could not be concluded because of the 4 studies demonstrating a wide CI.  相似文献   

8.
The aim of this study was to utilize a rodent model of resistance exercise to compare training with creatine supplementation with training alone. We tested the hypothesis that creatine supplementation during high resistance training would result in greater increases in muscle mass, contractile force, and superior resistance to fatigue compared with training alone. Two groups of rats underwent training of the tibialis anterior muscle (TA) for 4 weeks without creatine (NCr group) or with creatine (0.5 g.kg(-1).d(-1)) (CrT group). The relative loads in each animal were held constant during the training protocol. Training resulted in comparable significant increases in muscle contractile force in both the NCr and CrT groups. Creatine supplementation did not result in a significant increase in fatigue resistance and resulted in a significant decrease in postfatigue recovery compared with training alone. Training resulted in a significant increase in muscle dry weight in both groups, whereas muscle wet weight gains in the CrT group were double the gains in the NCr group. The data from this study suggest that for creatine to have a beneficial effect on muscle strength and mass beyond training alone, the workloads need to be adjusted. That is, any potential benefit of creatine to enable a greater lifting volume during resistance training needs to be incorporated into the training regime for creatine to be effective.  相似文献   

9.
Variable range of motion (ROM) training consists of partial ROM resistance training with the countermovement being performed at a different phase of the movement for each set. In this study, we assessed the effect of this method of training on peak force, load lifted, and concentric work performed. Six male subjects with resistance training backgrounds (age 20.2 +/- 1.3 years, height 179.4 +/- 4.6 cm, weight 89.6 +/- 9.9 kg, 6-repetition maximum [6RM] bench press 92.5 +/- 14.3 kg) participated in this study. Testing consisted of 6RM bench press strength tests during full (FULL), three quarter ((3/4)), one half ((1/2)), and one quarter ((1/4)) ROM from full elbow extension bench press performed on a Smith machine. The 6RM load, peak force (PF), and concentric work (W) performed during each ROM was examined using a one-way analysis of variance performed at an alpha level of p < 0.05. The 6RM load increased significantly as the ROM was decreased for all tests (FULL = 92.5 +/- 14.3 kg, (3/4) = 102.1 +/- 14.3 kg, (1/2) = 123.3 +/- 23.6 kg, (1/4) = 160.9 +/- 26.2 kg). PF during each test was significantly higher during the (1/4) (1924.8 +/- 557.9 N) and (1/2) (1859.4 +/- 317.1 N) ROM from full elbow extension bench press when compared with the (3/4) (1242.2 +/- 254.6 N) and FULL (1200.5 +/- 252.5 N) ROM exercise. Although higher force levels were evident, the restriction in barbell displacement resulted in a subsequent reduction in W as the lifting ROM was reduced. These results suggest that variable ROM resistance training results in increased force production as the ROM diminishes.  相似文献   

10.
A time-of-day influence on the neuromuscular response to strength training has been previously reported. However, no scientific study has examined the influence of the time of day when strength training is performed on hormonal adaptations. Therefore, the primary purpose of this study was to examine the effects of time-of-day-specific strength training on resting serum concentrations and diurnal patterns of testosterone (T) and cortisol (CORT) as well as maximum isometric strength of knee extensors. Thirty eight diurnally active healthy, previously untrained men (age 20-45 yrs) underwent a ten-week preparatory strength training period when sessions were conducted between 17:00-19:00 h. Thereafter, these subjects were randomized into either a morning (n=20, training times 07:00-09:00 h) or afternoon (n=18, 7:00-19:00 h) training group for another ten-week period of time-of-day-specific training (TST). Isometric unilateral knee extension peak torque (MVC) was measured at 07:00, 12:00, 17:00, and 20:30 h over two consecutive days (Day 1 & Day 2) before and after TST. Blood samples were obtained before each clock-time measurement to assess resting serum T and CORT concentrations. A matched control group (n=11) did not train but participated in the tests. Serum T and CORT concentrations significantly declined from 07:00 to 20:30 h on all test days (Time effect, p<.001). Serum CORT at 07:00 h was significantly higher on Day 1 than Day 2 in the control and afternoon group, both in Pre and Post conditions (Day x Time interaction, p<.01). In the morning group, a similar day-to-day difference was present in the Pre but not Post conditions (Time x Group interaction, p<.05). MVC significantly increased after TST in both the morning and afternoon groups (Pre to Post effect, p<.001). In both groups, a typical diurnal variation in MVC (Time effect, p<.001) was found, especially on Day 2 in the Pre condition, and this feature persisted from Pre to Post in the afternoon group. In the morning group, however, diurnal variation was reduced after TST on both Day 1 and Day 2 (Pre to PostxDay x TimexGroup interaction, p<.05). In conclusion, 10 weeks of morning time-of-day-specific strength training resulted in reduced morning resting CORT concentrations, presumably as a result of decreased masking effects of anticipatory psychological stress prior to the morning testing. The typical diurnal pattern of maximum isometric strength was blunted by the TST period in the morning but not the afternoon group. However, the TST period had no significant effect on the resting total T concentration and its diurnal pattern and on the absolute increase in maximum strength.  相似文献   

11.
Creatine monohydrate has become the supplement of choice for many athletes striving to improve sports performance. Recent data indicate that athletes may not be using creatine as a sports performance booster per se but instead use creatine chronically as a training aid to augment intense resistance training workouts. Although several studies have evaluated the combined effects of creatine supplementation and resistance training on muscle strength and weightlifting performance, these data have not been analyzed collectively. The purpose of this review is to evaluate the effects of creatine supplementation on muscle strength and weightlifting performance when ingested concomitant with resistance training. The effects of gender, interindividual variability, training status, and possible mechanisms of action are discussed. Of the 22 studies reviewed, the average increase in muscle strength (1, 3, or 10 repetition maximum [RM]) following creatine supplementation plus resistance training was 8% greater than the average increase in muscle strength following placebo ingestion during resistance training (20 vs. 12%). Similarly, the average increase in weightlifting performance (maximal repetitions at a given percent of maximal strength) following creatine supplementation plus resistance training was 14% greater than the average increase in weightlifting performance following placebo ingestion during resistance training (26 vs. 12%). The increase in bench press 1RM ranged from 3 to 45%, and the improvement in weightlifting performance in the bench press ranged from 16 to 43%. Thus there is substantial evidence to indicate that creatine supplementation during resistance training is more effective at increasing muscle strength and weightlifting performance than resistance training alone, although the response is highly variable.  相似文献   

12.
ABSTRACT: Santos, EJAM and Janeira, MAAS. The effects of resistance training on explosive strength indicators in adolescent basketball players. J Strength Cond Res 26(10): 2641-2647, 2012-The purpose of this study was to assess the effects of a lower- and upper-body 10-week in-season resistance training program on explosive strength development in young basketball players. Twenty-five adolescent male athletes, aged 14-15 years old, were randomly assigned to an experimental group (EG; n = 15) and a control group (CG; n = 10). The subjects were assessed at baseline and after training for squat jump (SJ), countermovement jump (CMJ), Abalakov test, drop jump, and seated medicine ball throw (MBT). The EG showed significant increases (p < 0.05) in all the variable scores. Conversely, the CG significantly decreased (p < 0.05) in SJ, CMJ, and Abalakov test scores and significantly increased in the results of MBT test (p < 0.05). The groups were similar on pretest, but significant differences (p < 0.05) occurred on posttest in all the variables. The results of this study show that a 10-week in-season resistance training program with moderate volume and intensity loads increased vertical jump and MBT performance in adolescent male basketball players. Coaches should know that such a short resistance training program specifically designed for young basketball players induce increased explosivity levels, which are essential to a better basketball performance, with no extra overload on adolescents' skeletal muscle development.  相似文献   

13.
The aim of this study was to investigate the effects of nonlinear periodized (NLP) and linear periodized (LP) resistance training (RT) on muscle thickness (MT) and strength, measured by an ultrasound technique and 1 repetition maximum (1RM), respectively. Thirty untrained men were randomly assigned to 3 groups: NLP (n = 11, age: 30.2 ± 1.1 years, height: 173.6 ± 7.2 cm, weight: 79.5 ± 13.1 kg), LP (n = 10, age: 29.8 ± 1.9 years, height: 172.0 ± 6.8 cm, weight: 79.9 ± 10.6 kg), and control group (CG; n = 9, age: 25.9 ± 3.6 years, height: 171.2 ± 6.3 cm, weight: 73.9 ± 9.9 kg). The right biceps and triceps MT and 1RM strength for the exercises bench press (BP), lat-pull down, triceps extension, and biceps curl (BC) were assessed before and after 12 weeks of training. The NLP program varied training biweekly during weeks 1-6 and on a daily basis during weeks 7-12. The LP program followed a pattern of intensity and volume changes every 4 weeks. The CG did not engage in any RT. Posttraining, both trained groups presented significant 1RM strength gains in all exercises (with the exception of the BP in LP). The 1RM of the NLP group was significantly higher than LP for BP and BC posttraining. There were no significant differences in biceps and triceps MT between baseline and posttraining for any group; however, posttraining, there were significant differences in biceps and triceps MT between NLP and the CG. The effect sizes were higher in NLP for the majority of observed variables. In conclusion, both LP and NLP are effective, but NLP may lead to greater gains in 1RM and MT over a 12-week training period.  相似文献   

14.
The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.  相似文献   

15.
The aim of this study was to compare the effects of resistance training to muscle failure (RT-F) and non-failure (RT-NF) on muscle mass, strength and activation of trained individuals. We also compared the effects of these protocols on muscle architecture parameters. A within-subjects design was used in which 14 participants had one leg randomly assigned to RT-F and the other to RT-NF. Each leg was trained 2 days per week for 10 weeks. Vastus lateralis (VL) muscle cross-sectional area (CSA), pennation angle (PA), fascicle length (FL) and 1-repetition maximum (1-RM) were assessed at baseline (Pre) and after 20 sessions (Post). The electromyographic signal (EMG) was assessed after the training period. RT-F and RT-NF protocols showed significant and similar increases in CSA (RT-F: 13.5% and RT-NF: 18.1%; P < 0.0001), PA (RT-F: 13.7% and RT-NF: 14.4%; P < 0.0001) and FL (RT-F: 11.8% and RT-NF: 8.6%; P < 0.0001). All protocols showed significant and similar increases in leg press (RT-F: 22.3% and RT-NF: 26.7%; P < 0.0001) and leg extension (RT-F: 33.3%, P < 0.0001 and RT-NF: 33.7%; P < 0.0001) 1-RM loads. No significant differences in EMG amplitude were detected between protocols (P > 0.05). In conclusion, RT-F and RT-NF are similarly effective in promoting increases in muscle mass, PA, FL, strength and activation.  相似文献   

16.
17.
The purpose of this study was to examine the early-phase adaptations of traditional dynamic constant external resistance (DCER) training vs. a portable upper-body training device (Fortex). The Fortex is a concentric training device based on air resistance. Contractions using this device are slow (1.5-3 s) and have a limited range of motion. The exercises potentially allow maximal muscle action during each contraction. Healthy, sedentary men (n = 30) were assigned to begin either 8 weeks of weight training (W, n = 12) or 8 weeks of Fortex training (F, n = 9), and were compared with a control group (C, n = 9). Exercises were chosen for the W group that would train similar muscle groups and contain a similar volume of repetitions as the F group. However, movement patterns and force curves were not identical. Increases in the upper-arm cross-sectional area were not detected in any of the groups. Both training groups showed strength gains in the various strength tests that were distinct from each other. Our results indicate that both Fortex and DCER training proved effective in eliciting strength gains in sedentary men over an 8-week training period. There are, however, limitations with the Fortex in terms of progression needs and training asymmetry that indicate it should be used as a complement to other training.  相似文献   

18.
This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds. Accepted: 15 October 1996  相似文献   

19.
This study assessed maximum eccentric (ECC) and concentric (CON) torque of quadriceps (QUAD) and hamstring (HAM) muscle groups in healthy females (n = 13) and males (n = 27). Peak torques (PT) of bilateral muscle actions were recorded at constant angular velocities of 0.52, 1.57 and 2.61 rad.s-1. The QUADCON and HAMCON PT decreased (p less than 0.05) with increasing angular velocity. The QUADECC and HAMECC PT increased (p less than 0.05) in females, whereas QUADECC PT decreased (p less than 0.05) and HAMECC PT showed no change in males. In general, ECC PT was higher (p less than 0.05) than CON PT and QUAD PT was higher (p less than 0.05) than HAM PT, for any given angular velocity. Males displayed higher (p less than 0.05) PT than females but when PT were adjusted for body mass the sex differences in QUADCON and HAMCON were reduced (p less than 0.05), whereas the differences in QUADECC and HAMECC were abolished. The CON and ECC PT were, on average, 60% and 41% greater, respectively, in males than in females. The corresponding differences, when adjusted for body mass, were 23% and 8%. ECC:CON PT for QUAD were higher (p less than 0.05) in females than in males. CON and ECC HAM:QUAD PT ratio increased (p less than 0.05), as a function of velocity. This study suggests, that bilateral ECC PT is higher than CON PT and CON HAM:QUAD PT ratio is higher than ECC HAM:QUAD PT ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号