首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purposes of the present study were to (a) modify previously published Vo(2)max equations using the constant error (CE = mean difference between actual and predicted Vo(2)max) values from Malek et al. (28); (b) cross-validate the modified equations to determine their accuracy for estimating Vo(2)max in aerobically trained men; (c) derive a new non- exercise-based equation for estimating Vo(2)max in aerobically trained men if the modified equations are not found to be accurate; and (d) cross-validate the new Vo(2)max equation using the predicted residual sum of squares (PRESS) statistic and an independent sample of aerobically trained men. One hundred and fifty-two aerobically trained men (Vo(2)max mean +/- SD = 4,154 +/- 629 ml.min(-1)) performed a maximal incremental test on a cycle ergometer to determine actual Vo(2)max. An aerobically trained man was defined as someone who had participated in continuous aerobic exercise 3 or more sessions per week for a minimum of 1 hour per session for at least the past 18 months. Nine previously published Vo(2)max equations were modified for use with aerobically trained men. The predicted Vo(2)max values from the 9 modified equations were compared to actual Vo(2)max by examining the CE, standard error of estimate (SEE), validity coefficient (r), and total error (TE). Cross-validation of the modified non-exercise-based equations on a random subsample of 50 subjects resulted in a %TE > or = 13% of the mean of actual Vo(2)max. Therefore, the following non-exercise-based Vo(2)max equation was derived from a random subsample of 112 subjects: Vo(2)max (ml.min(-1)) = 27.387(weight in kg) + 26.634(height in cm) - 27.572(age in years) + 26.161(h.wk(-1) of training) + 114.904(intensity of training using the Borg 6-20 scale) + 506.752(natural log of years of training) - 4,609.791 (R = 0.82, R(2) adjusted = 0.65, and SEE = 378 ml.min(-1)). Cross-validation of this equation on the remaining sample of 40 subjects resulted in a %TE of 10%. Therefore, the non-exercise-based equation derived in the present study is recommended for estimating Vo(2)max in aerobically trained men.  相似文献   

2.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

3.
The purpose of our investigation was to analyse the breathing patterns of professional cyclists during incremental exercise from submaximal to maximal intensities. A group of 11 elite amateur male road cyclists [E, mean age 23 (SD 2) years, peak oxygen uptake (VO2peak) 73.8 (SD 5.0) ml kg(-1) min(-1)] and 14 professional male road cyclists [P, mean age 26 (SD 2) years, (VO2peak) 73.2 (SD 6.6) ml kg(-1) min(-1)] participated in this study. Each of the subjects performed an exercise test on a cycle ergometer following a ramp protocol (exercise intensity increases of 25 W x min(-1)) until the subject was exhausted. For each subject, the following parameters were recorded during the tests: oxygen consumption (VO2), carbon dioxide output (VCO2), pulmonary ventilation (VE), tidal volume (VT), breathing frequency (fb), ventilatory equivalents for oxygen (VE x VO2(-1)) and carbon dioxide (VE x VCO2(-1)), end-tidal partial pressure of oxygen and partial pressure of carbon dioxide, inspiratory (tI) and expiratory (tE) times, inspiratory duty cycle (tI/tTOT, where tTOT is the time for one respiratory cycle), and mean inspiratory flow rate (VT/tI). Mean values of VE were significantly higher in E at 300, 350 and 400 W (P < 0.05, P < 0.05 and P < 0.01, respectively); fb was also higher in E in most moderate-to-maximal intensities. On the other hand, VT showed a different pattern in both groups at near-to maximal intensities, since no plateau was observed in P. The response of tI and tE was also different. Finally, VT/tI and tI/tTOT showed a similar response in both P and E. It was concluded that the breathing pattern of the two groups differed mainly in two aspects: in the professional cyclists, VE increased at any exercise intensity as a result of increases in both VT and fb, with no evidence of tachypnoeic shift, and tE was prolonged in this group at high exercise intensities. In contrast, neither the central drive nor the timing component of respiration seem to have been significantly altered by the training demands of professional cycling.  相似文献   

4.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

5.
Influence of body size and gender on control of ventilation   总被引:3,自引:0,他引:3  
Hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses are influenced by both metabolic activity and hormonal factors. By studying 67 subjects of both sexes, including those at the extremes of stature, we examined the influence of gender, CO2 production (VCO2), O2 consumption (VO2), body surface area (BSA), and vital capacity (VC) on resting ventilation (VE), HVR, and HCVR. We measured resting VE, VO2, and VCO2 and then performed isocapnic progressive hypoxic and hypercapnic ventilatory responses. The effect of stature was reflected in higher VE and metabolic rate (both P less than 0.001) in tall men compared with short men that was ablated by correction for BSA. Perhaps because their heights vary less than those of the men, tall women were not statistically distinguishable from short women in any of these measured parameters. Tall men tended to have greater hypoxic chemosensitivity than short men but this was not significantly different (P = 0.07). Gender affected the control of ventilation in a number of ways. Men had higher VE (P less than 0.05) and metabolic rate (P less than 0.001) than women. Even after correction for BSA men still had higher metabolic rates. Women had higher VE/VCO2 than men (P less than 0.05) and lower resting end-tidal Pco2 (PETCO2) values (P less than 0.05). Both A, the shape parameter of the hyperbolic HVR curve, and HVR determined from mouth occlusion pressure (AP) were greater in women than in men, although only AP reached statistical significance. However, corrections of A for BSA (P less than 0.05), VCO2 (P less than 0.01), and VC (P less than 0.001) amplified these differences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The exercising Thoroughbred horse (TB) is capable of exceptional cardiopulmonary performance. However, because the ventilatory equivalent for O2 (VE/VO2) does not increase above the gas exchange threshold (Tge), hypercapnia and hypoxemia accompany intense exercise in the TB compared with humans, in whom VE/VO2 increases during supra-Tge work, which both removes the CO2 produced by the HCO buffering of lactic acid and prevents arterial partial pressure of CO2 (PaCO2) from rising. We used breath-by-breath techniques to analyze the relationship between CO2 output (VCO2) and VO2 [V-slope lactate threshold (LT) estimation] during an incremental test to fatigue (7 to approximately 15 m/s; 1 m x s(-1) x min(-1)) in six TB. Peak blood lactate increased to 29.2 +/- 1.9 mM/l. However, as neither VE/VO2 nor VE/VCO2 increased, PaCO2 increased to 56.6 +/- 2.3 Torr at peak VO2 (VO2 max). Despite the presence of a relative hypoventilation (i.e., no increase in VE/VO2 or VE/VCO2), a distinct Tge was evidenced at 62.6 +/- 2.7% VO2 max. Tge occurred at a significantly higher (P < 0.05) percentage of VO2 max than the lactate (45.1 +/- 5.0%) or pH (47.4 +/- 6.6%) but not the bicarbonate (65.3 +/- 6.6%) threshold. In addition, PaCO2 was elevated significantly only at a workload > Tge. Thus, in marked contrast to healthy humans, pronounced V-slope (increase VCO2/VO2) behavior occurs in TB concomitant with elevated PaCO2 and without evidence of a ventilatory threshold.  相似文献   

7.
Six trained males [mean maximal O2 uptake (VO2max) = 66 ml X kg-1 X min-1] performed 30 min of cycling (mean = 76.8% VO2max) during normoxia (21.35 +/- 0.16% O2) and hyperoxia (61.34 +/- 1.0% O2). Values for VO2, CO2 output (VCO2), minute ventilation (VE), respiratory exchange ratio (RER), venous lactate, glycerol, free fatty acids, glucose, and alanine were obtained before, during, and after the exercise bout to investigate the possibility that a substrate shift is responsible for the previously observed enhanced performance and decreased RER during exercise with hyperoxia. VO2, free fatty acids, glucose, and alanine values were not significantly different in hyperoxia compared with normoxia. VCO2, RER, VE, and glycerol and lactate levels were all lower during hyperoxia. These results are interpreted to support the possibility of a substrate shift during hyperoxia.  相似文献   

8.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

9.
Five men performed an incremental exercise test following a normal, low and high carbohydrate dietary regimen over a 7-day period, to examine the influence of an altered carbohydrate energy intake on the relationship between the ventilation (VET) and lactate (LaT) thresholds. VET and LaT were determined from the ventilatory equivalents for O2 (VE.VO2(-1) and CO2 (VE.VCO2(-1) and the log-log transformation of the lactate (La) to power output relationship, respectively. The total duration of the incremental exercise test, carbon dioxide output (VCO2), respiratory exchange ratio, blood La values and arterialized venous partial pressure of CO2 (PCO2) were reduced, and VE.VCO2(-1), the slope of the VE-VCO2 relationship, blood beta-hydroxybutyrate and pH were increased during the low carbohydrate trial compared with the other conditions. Total plasma protein and Na+, K+, and Cl- were similar across conditions. LaT and VET were unaffected by the altered proportions of carbohydrate in the diets and occurred at a similar oxygen consumption (mean VO2 across trials was 1.98 L.min-1 for VET and 2.01 L.min-1 for LaT). A significant relationship (r = 0.86) was observed for the VO2 that represented individual VET and LaT values. The increased VE.VCO2(-1) and slope of the VE-VCO2 relationship could be accounted for by the lower PCO2. It is concluded that alterations in carbohydrate energy intake do not produce an uncoupling of VET and LaT as has been reported previously.  相似文献   

10.
The intrinsic relationship between ventilation (VE) and carbon dioxide output (VCO2) is described by the modified alveolar ventilation equation VE = VCO2 k/PaCO2(1-VD/VT) where PaCO2 is the partial pressure of CO2 in the arterial blood and VD/VT is the dead space fraction of the tidal volume. Previous investigators have reported that high-intensity exercise uncouples VE from VCO2; however, they did not measure the PaCO2 and VD/VT components of the overall relationship. In an attempt to provide a more complete analysis of the effects of high-intensity exercise on the VE-VCO2 relationship, we undertook an investigation where five subjects volunteered to perform three steady-state tests (SS1, SS2, SS3) at 60 W. One week after SS1 each subject was required to perform repeated 1-min bouts of exercise corresponding to a work rate of approximately 140% of maximal oxygen uptake (VO2max). Two and 24 h later the subjects performed SS2 and SS3, respectively. This exercise intervention caused PaCO2 during SS2 and SS3 to be regulated (P less than 0.01) approximately 4 Torr below the control (SS1) value of 38.8 Torr. Additionally, significant alterations were noted for VCO2 with corresponding values of 1.15 (SS1), 1.10 (SS2), and 1.04 (SS3) l/min. No changes were noted in either VD/VT or VE. In summary, it seems reasonable to suggest that the disproportionate increase in VE with respect to VCO2 noted in earlier work does not reflect an uncoupling. Rather the slope of the VE-VCO2 relationship is increased in a predictable manner as described by the modified alveolar ventilation equation.  相似文献   

11.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

12.
The influence of chronic obstructive pulmonary disease (COPD) on exercise ventilatory and gas exchange kinetics was assessed in nine patients with stable airway obstruction (forced expired volume at 1 s = 1.1 +/- 0.33 liters) and compared with that in six normal men. Minute ventilation (VE), CO2 output (VCO2), and O2 uptake (VO2) were determined breath-by-breath at rest and after the onset of constant-load subanaerobic threshold exercise. The initial increase in VE, VCO2, and VO2 from rest (phase I), the subsequent slow exponential rise (phase II), and the steady-state (phase III) responses were analyzed. The COPD group had a significantly smaller phase I increase in VE (3.4 +/- 0.89 vs. 6.8 +/- 1.05 liters/min), VCO2 (0.10 +/- 0.03 vs. 0.22 +/- 0.03 liters/min), VO2 (0.10 +/- 0.03 vs. 0.24 +/- 0.04 liters/min), heart rate (HR) (6 +/- 0.9 vs. 16 +/- 1.4 beats/min), and O2 pulse (0.93 +/- 0.21 vs. 2.2 +/- 0.45 ml/beat) than the controls. Phase I increase in VE was significantly correlated with phase I increase in VO2 (r = 0.88) and HR (r = 0.78) in the COPD group. Most patients also had markedly slower phase II kinetics, i.e., longer time constants (tau) for VE (87 +/- 7 vs. 65 +/- 2 s), VCO2 (79 +/- 6 vs. 63 +/- 3 s), and VO2 (56 +/- 5 vs. 39 +/- 2 s) and longer half times for HR (68 +/- 9 vs. 32 +/- 2 s) and O2 pulse (42 +/- 3 vs. 31 +/- 2 s) compared with controls. However, tau VO2/tau VE and tau VCO2/tau VE were similar in both groups. The significant correlations of the phase I VE increase with HR and VO2 are consistent with the concept that the immediate exercise hyperpnea has a cardiodynamic basis. The slow ventilatory kinetics during phase II in the COPD group appeared to be more closely related to a slowed cardiovascular response rather than to any index of respiratory function. O2 breathing did not affect the phase I increase in VE but did slow phase II kinetics in most subjects. This confirms that the role attributed to the carotid bodies in ventilatory control during exercise in normal subjects also operates in patients with COPD.  相似文献   

13.
gamma-Aminobutyric acid (GABA) content of the brain increases during hypoxia and hypercapnia and GABA by itself is a central ventilatory depressant and may depress metabolism as well. Therefore the effect of centrally administered GABA by ventriculocisternal perfusion on O2 consumption (VO2) and CO2 production (VCO2) was studied in pentobarbital-anesthetized dogs. GABA (30 mM) in mock cerebrospinal fluid (CSF) was perfused for 15 min at the rate of 1.0 ml/min followed by perfusion with mock CSF alone. Body temperature, perfusion pressure, and CSF pH were kept constant. Minute ventilation (VE) was kept constant mechanically. Under these conditions, VO2, VCO2, alveolar ventilation (VA), and relative pulmonary dead space volume (VD/VT) were measured. During perfusion with 30 mM GABA, mean VO2 (+/- SE) decreased from 96.5 +/- 3.3 to 81.9 +/- 5.1 ml/min, VCO2 from 72.1 +/- 3.8 to 60.7 +/- 3.0 ml/min, and VA from 1.7 +/- 0.1 to 1.3 +/- 0.1 l/min. VD/VT increased from 0.55 +/- 0.02 to 0.65 +/- 0.01. Perfusion with mock CSF alone restored these parameters to initial levels within 15 min. We conclude that centrally administered GABA depresses VO2 and VCO2. This reduction in metabolic function is independent of the central modulatory effects of GABA on respiration.  相似文献   

14.
The kinetics of O2 up-take (VO2), CO2 output (VCO2), ventilation (VE), and heart rate (HR) were studied during exercise in normoxia and hypoxia [inspired O2 fraction (FIO2) 0.14]. Eight male subjects each completed 6 on- and off-step transitions in work rate (WR) from low (25 W) to moderate (100-125 W) levels and a pseudorandom binary sequence (PRBS) exercise test in which WR was varied between the same WRs. Breath-by-breath data were linearly interpolated to yield 1-s values. After the first PRBS cycle had been omitted as a warm-up, five cycles were ensemble-averaged before frequency domain analysis by standard Fourier methods. The step data were fit by a two-component (three for HR) exponential model to estimate kinetic parameters. In the steady state of low and moderate WRs, each value of VO2, VCO2, VE, and HR was significantly greater during hypoxic than normoxic exercise (P less than 0.05) with the exception of VCO2 (low WR). Hypoxia slowed the kinetics of VO2 and HR in on- and off-step transitions and speeded up the kinetics of VCO2 and VE in the on-transition and of VE in the off-transition. Frequency domain analysis confined to the range of 0.003-0.019 Hz for the PRBS tests indicated reductions in amplitude and greater phase shifts in the hypoxic tests for VO2 and HR at specific frequencies, whereas amplitude tended to be greater with little change in phase shift for VCO2 and VE during hypoxic tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To test the hypothesis that in chronic obstructive pulmonary disease (COPD) patients the ventilatory and metabolic requirements during cycling and walking exercise are different, paralleling the level of breathlessness, we studied nine patients with moderate to severe, stable COPD. Each subject underwent two exercise protocols: a 1-min incremental cycle ergometer exercise (C) and a "shuttle" walking test (W). Oxygen uptake (VO(2)), CO(2) output (VCO(2)), minute ventilation (VE), and heart rate (HR) were measured with a portable telemetric system. Venous blood lactates were monitored. Measurements of arterial blood gases and pH were obtained in seven patients. Physiological dead space-tidal volume ratio (VD/VT) was computed. At peak exercise, W vs. C VO(2), VE, and HR values were similar, whereas VCO(2) (848 +/- 69 vs. 1,225 +/- 45 ml/min; P < 0. 001) and lactate (1.5 +/- 0.2 vs. 4.1 +/- 0.2 meq/l; P < 0.001) were lower, DeltaVE/DeltaVCO(2) (35.7 +/- 1.7 vs. 25.9 +/- 1.3; P < 0. 001) and DeltaHR/DeltaVO(2) values (51 +/- 3 vs. 40 +/- 4; P < 0.05) were significantly higher. Analyses of arterial blood gases at peak exercise revealed higher VD/VT and lower arterial partial pressure of oxygen values for W compared with C. In COPD, reduced walking capacity is associated with an excessively high ventilatory demand. Decreased pulmonary gas exchange efficiency and arterial hypoxemia are likely to be responsible for the observed findings.  相似文献   

16.
The relationship between ventilation (VE), oxygen consumption (VO2), and carbon dioxide production (VCO2) during work were studied in four trained males during exercise-induced carbohydrate depletion. Repeated bouts of heavy treadmill exercise (6 min at 95% VO2 max) were performed once per hour for 24 h in order to promote a shift in energy substrate from carbohydrate to fat. Measurements of VO2 and VCO2 recorded during each minute indicated that VO2 was unaffected by the number of runs, whereas VCO2 showed a progressive reduction which amounted to 24% during the final run. A corresponding decline of 19% was observed in the respiratory exchange ratio. No significant change in VE occurred between any of the runs. It is concluded that during heavy, repeated, muscular exercise, reductions in VO2, strongly suggestive of an increased fat oxidation, are not accompanied by a corresponding change in ventilation.  相似文献   

17.
Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.  相似文献   

18.
An instrument has been developed for the simultaneous measurement of carbon dioxide excretion (VCO2) and oxygen uptake (VO2). This instrument, the Nutrimeter, gives these breath-averaged measurements continuously without having to determine respiratory flow rate, perform timed spirometric gas collections, or determine absolute CO2 or O2 concentrations. It can be used on ventilated or nonventilated patients in long- and short-term studies. VO2 is determined via the replenishment technique. VCO2 is determined via a new technique, absorption-titration, described here. Bench test results of VCO2 measurements show a standard error of the estimate (SEE) +/- 0.591% of full scale (500 ml/min) and maximum single point error (MSPE) of +/- 3.54% over a 100--350 ml/min range. VO2 measurements show SEE +/- 0.518% of full scale (1,000 ml/min) and MSPE +/- 2.42% over a 100--450 ml/min range. In 31 human clinical trials the Nutrimeter was compared with the open-circuit spirometric collection and micro-Scholander analysis technique. VCO2 measurements show SEE +/- 2.208% and MSPE +/- 10.57% over 135--315 ml/min. VO2 measurements show SEE +/- 1.134% of full scale and MSPE +/- 9.54% over 170--360 ml/min. Response time is 60 s optimally for step changes in VO2 (0--90% of steady-state value), 90 s for VCO2.  相似文献   

19.
The aim of this study was to examine whether variables commonly used in aerobic exercise testing are influenced by menstrual cycle phases and use of oral contraceptive (OC) in female rowers. Twenty-four eumenorrheic female rowers distinguished on the basis of both menstrual status and athleticism participated in this study and were divided into competitive cyclic athletes (n = 8), recreationally trained cyclic athletes (n = 7), and recreationally trained athletes taking OC pills (ROC; n = 9). Rowers performed 2 incremental tests to voluntary exhaustion on a rowing ergometer during 2 different phases of the menstrual cycle: the follicular phase (FP) and the luteal phase (LP). The study variables were power output (Pa), heart rate (HR), oxygen consumption (VO2), carbon dioxide production (VCO2), minute ventilation (VE), the mean respiratory exchange ratio, and ventilatory equivalents of O2 (VE/VO2)) and CO2 (VE/VCO2), which were measured at maximal and at the aerobic-anaerobic transition intensities. In addition, maximal blood lactate (La) values after the test were obtained. When comparing Pa, &OV0312;o2, HR, and La values, no significant differences (p > 0.05) between FP and LP at maximal load and at threshold intensity were found in all 3 groups of the rowers studied. However, we observed higher values (p < 0.05) for VE/VCO2 at both intensities in LP compared with FP in the ROC group. In conclusion, sport-specific endurance performance was not influenced by the phase of the normal menstrual cycle and the synthetic menstrual cycle of the OC users in the rowers studied. Therefore, normally menstruating female rowers and female rowers taking OC pills should not be concerned about the timing of their menstrual cycle with regard to optimized sport-specific endurance performance.  相似文献   

20.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号