首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interplay between mycobacteria and host signalling pathways   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.  相似文献   

4.
5.
Toll-like receptors (TLRs) have emerged as a major receptor family involved in non-self recognition. They have a vital role in triggering innate immunity and orchestrate the acquired immune response during bacterial and viral infection. However, the role of TLRs during infection with protozoan pathogens is less clear. Nevertheless, our understanding of how these parasitic microorganisms engage the host TLR signalling system has now entered a phase of rapid expansion. This Review describes recent insights into how parasitic protozoans are sensed by TLR molecules, and how the TLR system itself can be targeted by these microbial pathogens for their own survival.  相似文献   

6.
Salmonella uses Type 3 secretion systems (T3SSs) to deliver virulence factors, called effectors, into host cells during infection. The T3SS effectors promote invasion into host cells and the generation of a replicative niche. SopB is a T3SS effector that plays an important role in Salmonella pathogenesis through its lipid phosphatase activity. Here, we show that SopB mediates the recruitment of Rho GTPases (RhoB, RhoD, RhoH, and RhoJ) to bacterial invasion sites. RhoJ contributes to Salmonella invasion, and RhoB and RhoH play an important role in Akt activation. R‐Ras1 also contributes to SopB‐dependent Akt activation by promoting the localised production of PI(3,4)P2/PI(3,4,5)P3. Our studies reveal new signalling factors involved in SopB‐dependent Salmonella infection.  相似文献   

7.
8.
The bacterial virulence factors Shiga toxins (Stxs) are expressed by Shigella dysenteriae serotype 1 and certain Escherichia coli strains. Stxs are protein synthesis inhibitors and induce apoptosis in many cell types. Stxs induce apoptosis via prolonged endoplasmic reticulum stress signalling to activate both extrinsic and intrinsic pathways in human myeloid cells. Studies have shown that autophagy, a lysosome-dependent catabolic process, may be associated with activation of pro-survival or death processes. It is currently unknown if autophagy contributes to apoptosis or protects cells from Stxs. To study cellular responses to Stxs, we intoxicated toxin-sensitive cells (THP-1 and HK-2 cells), and toxin-resistant cells (primary human monocyte-derived macrophages) and examined toxin intracellular trafficking and autophagosome formation. Stxs translocated to different cell compartments in toxin-resistant versus toxin-sensitive cells. Confocal microscopy revealed autophagosome formation in both toxin-resistant and toxin-sensitive cells. Proteolytic cleavage of Atg5 and Beclin-1 plays pivotal roles in switching non-cytotoxic autophagy to cell death signalling. We detected cleaved forms of Atg5 and Beclin-1 in Stx-treated toxin-sensitive cells, while cleaved caspases, calpains, Atg5 and Beclin-1 were not detected in toxin-resistant primary human monocytes and macrophages. These findings suggest that toxin sensitivity correlates with caspase and calpain activation, leading to Atg5 and Beclin-1 cleavage.  相似文献   

9.
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short-distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long-distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection.  相似文献   

10.
Osteoclast signalling pathways   总被引:8,自引:0,他引:8  
The osteoclast is a monocyte-derived cell with complex regulatory control due to its role, balancing calcium homeostasis with skeletal modelling and repair. Normal differentiation requires tyrosine kinase- and tumor necrosis-family receptors, normally fms and RANK. Ligands for these receptors plus unidentified serum or cell-presented factor(s) are needed for in vitro differentiation, possibly signalling via an immune-like tyrosine kinase acceptor molecule. Osteoclast development and activity are increased by cytokines signalling through GP130, such as IL-6, by TGF-beta, and by IL-1, although these cannot replace serum. Other tyrosine kinase receptors including kit and met can augment fms signalling, and TNFs other than RANKL, including TNFalpha and TRAIL, modify RANK signalling, which is also susceptible to interference by interferons. The situation is further complicated by G-protein coupled receptors including the calcitonin receptor, by integrin or calcium-mediated signals, and by estrogen receptors, which operate in bone largely via NO downstream signals. Differentiation, activity, and survival signals merge in intracellular second messengers. These include cytoplasmic kinases of several families; differentiation pathways often terminate in Erk/Jun kinases or NF-kappaB. Key regulatory intermediates include TRAF6, src, Smad3, phosphatidylinositol-3-kinase, Jak/Stat, and the cGMP-dependent protein kinase I. There are substantial uncertainties regarding how intracellular agents connect to primary signals. The frontier includes characterization of how scaffolding/adapter proteins, such as cbl, gab, grb, p130Cas, and shc, as well as itam-containing proteins and nonreceptor tyrosine kinase adapters of the src and syk families, delimit and integrate signals of multiple receptors to bring about specific outcomes.  相似文献   

11.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

12.
Activation of cell stress response pathways by Shiga toxins   总被引:1,自引:0,他引:1  
Shiga toxin-producing bacteria cause widespread outbreaks of bloody diarrhoea that may progress to life-threatening systemic complications. Shiga toxins (Stxs), the main virulence factors expressed by the pathogens, are ribosome-inactivating proteins which inhibit protein synthesis by removing an adenine residue from 28S rRNA. Recently, Stxs were shown to activate multiple stress-associated signalling pathways in mammalian cells. The ribotoxic stress response is activated following the depurination reaction localized to the α-sarcin/ricin loop of eukaryotic ribosomes. The unfolded protein response (UPR) may be initiated by toxin unfolding within the endoplasmic reticulum, and maintained by production of truncated, misfolded proteins following intoxication. Activation of the ribotoxic stress response leads to signalling through MAPK cascades, which appears to be critical for activation of innate immunity and regulation of apoptosis. Precise mechanisms linking ribosomal damage with MAPK activation require clarification but may involve recognition of ribosomal conformational changes and binding of protein kinases to ribosomes, which activate MAP3Ks and MAP2Ks. Stxs appear capable of activating all ER membrane localized UPR sensors. Prolonged signalling through the UPR induces apoptosis in some cell types. The characterization of stress responses activated by Stxs may identify targets for the development of interventional therapies to block cell damage and disease progression.  相似文献   

13.
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria‐derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.  相似文献   

14.
Graef M  Nunnari J 《The EMBO journal》2011,30(11):2101-2114
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.  相似文献   

15.

Background

Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored.

Methodology/Principal Findings

Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of β-catenin-TCF signalling.

Conclusions/Significance

Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.  相似文献   

16.
17.
Regulation of cardiac hypertrophy by intracellular signalling pathways   总被引:1,自引:0,他引:1  
The mammalian heart is a dynamic organ that can grow and change to accommodate alterations in its workload. During development and in response to physiological stimuli or pathological insults, the heart undergoes hypertrophic enlargement, which is characterized by an increase in the size of individual cardiac myocytes. Recent findings in genetically modified animal models implicate important intermediate signal-transduction pathways in the coordination of heart growth following physiological and pathological stimulation.  相似文献   

18.
Pathogenic strains of Bacillus anthracis produce two potent toxins, lethal toxin (LT), a metalloprotease that cleaves mitogen-activated protein kinase kinases, and oedema toxin (ET), a calcium/calmodulin-dependent adenylate cyclase. Emerging evidence indicates a role for both toxins in suppressing the initiation of both innate and adaptive immune responses, which are essential to keep the infection under control. Here we show that LT and ET inhibit chemotaxis of T-cells and macrophages by subverting signalling by both CXC and CC chemokine receptors. The data highlight a novel strategy of immunosuppression by B. anthracis based on inhibition of immune cell homing.  相似文献   

19.
20.
Abstract. 1. The gall-midge Rhabdophaga strobiloides (O.S.) forms a gall in the apical bud of actively growing willow twigs.
2. Galls were not randomly distributed among twigs. Twigs that arose towards the distal end of the branch were much more likely to be galled. Distally located twigs also grew to greater girth than more proximally located twigs.
3. Comparisons of galled twigs with normal twigs in similar locations along their branch showed that the gall causes even greater growth in twig girth than when no gall is present.
4. The hypothesis that galled twigs draw photosynthate produced elsewhere in the plant was tested in an experiment that measured the growth of galled and normal twigs. with their leaves intact, to galled and normal twigs that were manually defoliated. Defoliation caused reduced growth in normal twigs, but galled twigs grew equally well with or without their leaves. Leaf removal had no effect on gall growth.
5. Twig diameter was positively correlated with gall diameter. Call diameter was positively correlated with larval biomass.
6. Patterns of twig and gall growth suggest that the gall-midge manipulates host plant growth and development to provide resources for growth and survival. Manipulation of the host may be an important phenomenon in the evolution of parasitic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号