首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacteriophage T4 41 and 61 proteins function as a primase-helicase which in vitro both unwinds double-stranded DNA and synthesizes the pentaribonucleotides used to initiate DNA synthesis on the lagging strand. We demonstrate that 61 protein alone possesses a weak DNA template-dependent oligomer synthesizing activity, whose products differ in size and nucleotide specificity from those made by the 61 and 41 proteins together. We have previously shown that the 61 and 41 proteins make primarily ribonucleotide pentamers of the sequence pppApC(pN)3, although some pentamers beginning with G were also detected on phi X174 single-stranded DNA. The pentamers pppApC(pN)3 have also been shown to initiate T4 DNA chains in vivo (Kurosawa, Y., and Okazaki, T. (1979) J. Mol. Biol. 135, 841-861). We now show that in contrast, the major products made by 61 protein alone on phi X174 DNA with [alpha-32P]CTP and the other three ribonucleoside triphosphates are not pentamers, but the dimers pppApC and pppGpC. In addition, minor amounts of products from 3 to approximately 45 nucleotides in length are also synthesized. Unlike the 61/41 protein reaction, 61 protein alone can substitute dATP or dGTP for ATP or GTP. Addition of 41 protein greatly stimulates oligomer synthesis, especially the synthesis of products made with ATP and CTP and products 5 nucleotides in length. Thus, both 61 and 41 proteins are needed to obtain efficient synthesis of the biologically relevant pentamers pppApC(pN)3. We demonstrate that the glucosylated hydroxymethylcytosines present in T4 DNA do not support the initiation of primer synthesis by the 61 protein on this template. With glycosylated hydroxymethyl T4 DNA, pppApC but not pppGpC oligomers are detected. If the T4 DNA is modified by hydroxymethylation but not glucosylation, pppApC and only a trace of pppGpC products are seen. In the accompanying paper (Nossal, N.G., and Hinton, D.M. (1987) J. Biol. Chem. 262, 10879-10885), we examine DNA synthesis primed by 61 protein in the absence of 41 protein.  相似文献   

2.
T A Cha  B M Alberts 《Biochemistry》1990,29(7):1791-1798
We have demonstrated previously that the template sequences 5'-GTT-3' and 5'-GCT-3' serve as necessary and sufficient signals for the initiation of new DNA chains that start with pentaribonucleotide primers of sequence pppApCpNpNpN or pppGpCpNpNpN, respectively. Normally, the complete T4 primosome, consisting of the T4 gene 41 (DNA helicase) and gene 61 (primase) proteins, is required to produce RNA primers. However, a high concentration of the 61 protein alone can prime DNA chain starts from the GCT sites [Cha, T.-A., & Alberts, B. M. (1986) J. Biol. Chem. 261, 7001-7010]. We show here that the 61 protein can catalyze a single-stranded DNA template-dependent reaction in which the dimers pppApC and pppGpC are the major products and much longer oligomers of various lengths are minor ones. Further addition of the 41 protein is needed to form a primosome that catalyzes efficient synthesis of the physiologically relevant pentaribonucleotides that are responsible for the de novo DNA chain starts on the lagging strand of a replication fork. The helicase activity of the 41 protein is necessary and sufficient to ensure a high rate and processivity of DNA synthesis on the leading strand [Cha, T.-A., & Alberts, B. M. (1989) J. Biol. Chem. 264, 12220-12225]. Coupling an RNA primase to this helicase in the primosome therefore coordinates the leading- and lagging-strand DNA syntheses at a DNA replication fork. Our experiments reveal that the addition of the T4 helix-destabilizing protein (the gene 32 protein) is required to confine the synthesis of RNA primers to those sites where they are used to start an Okazaki fragment, causing many potential priming sites to be passed by the primosome without triggering primer synthesis.  相似文献   

3.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

4.
The purified DNA replication proteins encoded by genes 41 and 61 of bacteriophage T4 catalyze efficient RNA primer synthesis on a single-stranded DNA template. In the presence of additional T4 replication proteins, we demonstrate that the template sequences 5'-GTT-3' and 5'-GCT-3' serve as necessary and sufficient signals for RNA primer-dependent initiation of new DNA chains. These chains start with primers that have the sequences pppApCpNpNpN and pppGpCpNpNpN, where N can be any one of the four ribonucleotides. Each primer is initiated from the T (A-start primers) or C (G-start primers) in the center of the recognized template sequence. A subset of the DNA chain starts is observed when one of the four ribonucleoside triphosphates used as the substrates for primer synthesis is omitted; the starts observed reveal that both pentaribonucleotide and tetraribonucleotide primers can be used for efficient initiation of new DNA chains, whereas primers that are only 3 nucleotides long are inactive. It was known previously that, when 61 protein is present in catalytic amounts, the 41 and 61 proteins are both required for observing RNA primer synthesis. However, by raising the concentration of the 61 protein to a much higher level, a substantial amount of RNA-primed DNA synthesis is obtained in the absence of 41 protein. The DNA chains made are initiated by primers that seem to be identical to those made when both 41 and 61 proteins are present; however, only those template sites containing the 5'-GCT-3' sequence are utilized. The 61 protein is, therefore, the RNA primase, whereas the 41 protein should be viewed as a DNA helicase that is required (presumably via a 41/61 complex) for efficient primase recognition of both the 5'-GCT-3' and 5'-GTT-3' DNA template sequences.  相似文献   

5.
RNA priming of DNA replication by bacteriophage T4 proteins   总被引:13,自引:0,他引:13  
Bacteriophage T4 DNA replication proteins have been shown previously to require ribonucleoside triphosphates to initiator new DNA chains on unprimed single-stranded DNA templates in vitro. This DNA synthesis requires a protein controlled by T4 gene 61, as well as the T4 gene 41, 43 (DNA polymerase), 44, 45, and 62 proteins, and is stimulated by the gene 32 (helix-destabilizing) protein. In this paper, the nature of the RNA primers involved in DNA synthesis by the T4 proteins has been determined, using phi X174 and f1 DNA as model templates. The T4 41 and "61" proteins synthesize pentanucleotides with the sequence pppA-C(N)3 where N in positions 3 and 4 can be G, U, C, or A. The same group of sequences is found in the RNA at the 5' terminus of the phi X174 DNA product made by the seven T4 proteins. The DNA product chains begin at multiple discrete positions on the phi X174 DNA template. The characteristics of the T4 41 and "61" protein priming reaction are thus appropriate for a reaction required to initiate the synthesis of discontinuous "Okazaki" pieces on the lagging strand during the replication of duplex DNA.  相似文献   

6.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

7.
The bacteriophage T4 primase, composed of the T4 proteins 41 and 61, synthesizes pentaribonucleotides used to prime DNA synthesis on single-stranded DNA in vitro. 41 protein is also a DNA helicase that opens DNA in the same direction as the growing replication fork. Previously, Mattson et al. (Mattson, T., Van Houwe, G., Bolle, A., Selzer, G., and Epstein, R. (1977) Mol. Gen. Genet. 154, 319-326) located part of gene 41 on a 3400-base pair EcoRI fragment of T4 DNA (map units 24.3 to 21.15). In this paper, we report the cloning of T4 DNA representing map units 24.3 to 20.06 in a multicopy plasmid vector. Extracts of cells containing this plasmid complement gene 41- extracts in a DNA synthesis assay, indicating that this region contains all the information necessary for the expression of active 41 protein. We located gene 41 more precisely between T4 map units 22.01 to 20.06 since our cloning of this region downstream of the strong lambda promoter PL results in the production of active 41 protein at a level 100-fold greater than after T4 infection. We have purified 133 mg of homogeneous 41 protein from 27 g of these cells. Like the 41 protein from T4 infected cells, the purified 41 protein in conjunction with the T4 gene 61 priming protein catalyzes primer formation (assayed by RNA primer-dependent DNA synthesis with T4 polymerase, the genes 44/62 and 45 polymerase accessory proteins, and the gene 32 helix-destabilizing protein) and is a helicase whose activity is stimulated by T4 61 protein.  相似文献   

8.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

9.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

10.
The product specified by T4 bacteriophage gene 41 is known from genetic analyses to be essential for phage DNA replication in vivo. Correspondingly, the purified gene 41 protein is an essential component of an efficient in vitro DNA replication system reconstructed from seven purified T4 replication proteins; it is required both for the synthesis of short RNA primers (in conjunction with the T4 gene 61 protein) and for the rapid unwinding of the double-helical DNA template at a replication fork. The purified gene 41 protein exhibits a DNA-dependent GTPase (and ATPase) activity. In this report, we have used this associated GTPase activity as a biochemical probe for the analysis of the interactions between DNA and the 41 protein. Our results suggest that, upon binding GTP, the 41 protein monomer is induced to form a dimer, which can them form a tight complex with single-stranded DNA. Driven by the repeated hydrolysis of GTP molecules, the 41 protein dimer appears to run rapidly along the bound DNA chain. Studies with the synthetic GTP analogue, GTP gamma S, suggest that GTP hydrolysis is required for this 41 protein movement, but that it is not essential for the function of the 41 protein in RNA primer synthesis. In sum, our observations suggest that a 41 protein dimer runs along the lagging strand template at a DNA replication fork; from this position, it functions as a DNA helicase and simultaneously interacts with the T4 gene 61 protein to make the pentaribonucleotide primers which initiate Okazaki pieces at specific primer initiation sites.  相似文献   

11.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

12.
The bacteriophage T4 gene 61 protein is required, together with the gene 41 protein and single-stranded DNA, for the synthesis of the pentaribonucleotides that are used as primers for the start of each new Okazaki DNA fragment during T4 DNA replication. Using this priming activity as an assay, we have purified the 61 protein to essential homogeneity in milligram amounts. The priming activity was identified with the product of T4 gene 61 by using two-dimensional polyacrylamide gel electrophoresis to compare all of the T4-induced proteins in wild-type and mutant infections; the purified protein co-migrates with the only detectable protein missing in a 61- mutant infection. The purified 61 protein is shown to bind to the T4 helix-destabilizing protein (gene 32 protein) and to both single-stranded and double-stranded DNA. We have failed to detect any ribonucleotide polymerizing activity in either the 61 protein or the 41 protein alone; both the 61 and 41 proteins must be present to observe any synthesis of oligoribonucleotides.  相似文献   

13.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

14.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

15.
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.  相似文献   

16.
DNA polymerase and gene 4 protein of bacteriophage T7 catalyze DNA synthesis on duplex DNA templates. Synthesis is initiated at nicks in the DNA template, and this leading strand synthesis results in displacement of one of the parental strands. In the presence of ribonucleoside 5'-triphosphates the gene 4 protein catalyzes the synthesis of oligoribonucleotide primers on the displaced single strand, and their extension by T7 dna polymerase accounts for lagging strand synthesis. Since all the oligoribonucleotide primers bear adenosine 5'-triphosphate residues at their 5' termini, [gamma 32P]ATP is incorporated specifically into the product molecule, thus providing a rapid and sensitive assay for the synthesis of the RNA primers. Both primer synthesis and DNA synthesis are stimulated 3- to 5-fold by the presence of either Escherichia coli or T7 helix-destabilizing protein (DNA binding protein). ATP and CTP together fully satisfy the requirement for rNTPs and provide maximum synthesis of primers and DNA. Provided that T7 DNA polymerase is present, RNA-primed DNA synthesis occurs on either duplex or single-stranded DNA templates and to equal extents on either strand of T7 DNA. No primer-directed DNA synthesis occurs on poly(dT) or poly(dG) templates, indicating that synthesis of primers is template-directed.  相似文献   

17.
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.  相似文献   

18.
Gene 4 of bacteriophage T7 encodes two proteins, a 63-kDa protein and a colinear 56-kDa protein, that are essential for synthesis of leading and lagging strands during DNA replication. The gene 4 proteins together catalyze the synthesis of oligoribonucleotides, pppACC(C/A) or pppACAC, at the single-stranded DNA sequences 3'-CTGG(G/T)-5' or 3'-CTGTG-5', respectively. Purified 56-kDa protein has helicase activity, but no primase activity. In order to study 63-kDa gene 4 protein free of 56-kDa gene 4 protein, mutations were introduced into the internal ribosome-binding site responsible for the translation of the 56-kDa protein. The 63-kDa gene 4 protein was purified 16,000-fold from Escherichia coli cells harboring an expression vector containing the mutated gene 4. Purified 63-kDa gene 4 protein has primase, helicase, and single-stranded DNA-dependent dTTPase activities. The constraints of primase recognition sequences, nucleotide substrate requirements, and the effects of additional proteins on oligoribonucleotide synthesis by the 63-kDa gene 4 protein have been examined using templates of defined sequence. A three-base sequence, 3'-CTG-5', is necessary and sufficient to support the synthesis of pppAC dimers. dTTP hydrolysis is essential for oligoribonucleotide synthesis. Addition of a 7-fold molar excess of 56-kDa gene 4 protein to 63-kDa protein increases the number of oligoribonucleotides synthesized by 63-kDa protein 100-fold. The increase in oligonucleotides results predominantly from an increase in the synthesis of tetramers, with relatively little change in the synthesis of dimers and trimers. The presence of 56-kDa protein also causes 63-kDa protein to synthesize "pseudo-templated" pppACCCC pentamers at the recognition sequence 3'-CTGGG-5'. T7 gene 2.5 protein, a single-stranded DNA binding protein, increases the total number of oligoribonucleotides synthesized by 63-kDa gene 4 protein on single-stranded M13 DNA, but has no effect on the ratio of dimers to trimers and tetramers.  相似文献   

19.
Three proteins catalyze RNA-primed DNA synthesis on the lagging strand side of the replication fork of bacteriophage T7. Oligoribonucleotides are synthesized by T7 gene 4 protein, which also provides helicase activity. DNA synthesis is catalyzed by gene 5 protein of the phage, and processivity of DNA synthesis is conferred by Escherichia coli thioredoxin, a protein that is tightly associated with gene 5 protein. T7 DNA polymerase and gene 4 protein associate to form a complex that can be isolated by filtration through a molecular sieve. The complex is stable in 50 mM NaCl but is dissociated by 100 mM NaCl, a salt concentration that does not inhibit RNA-primed DNA synthesis. T7 DNA polymerase forms a stable complex with single-stranded M13 DNA at 50 mM NaCl as measured by gel filtration, and this complex requires 200 mM NaCl for dissociation, a salt concentration that inhibits RNA-primed DNA synthesis. Gene 4 protein alone does not bind to single-stranded DNA. In the presence of MgCl2 and dTTP or beta, gamma-methylene dTTP, a gene 4 protein-M13 DNA complex that is stable at 200 mM NaCl is formed. The affinity of DNA polymerase for both gene 4 protein and single-stranded DNA leads to the formation of a gene 4 protein-DNA polymerase-M13 DNA complex even in the absence of nucleoside triphosphates. However, the binding of each protein to DNA plays an important role in mediating the interaction of the proteins with each other. High concentrations of single-stranded DNA inhibit RNA-primed DNA synthesis by diluting the amount of proteins bound to each template and reducing the frequency of protein-protein interactions. Preincubation of gene 4 protein, DNA polymerase, and M13 DNA in the presence of dTTP forms protein-DNA complexes that most efficiently catalyze RNA-primed DNA synthesis in the presence of excess single-stranded competitor DNA.  相似文献   

20.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号