首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stages in the differentiation of the tapetum of Psilotum nudumare described. Two concurrently occurring components of thetapetum can be recognized. A plasmodial tapetum with associatedfunctional nuclei develops within the sporangial loculus duringthe early stages of differentiation, appears to remain viablefor several months, that is during the entire period of sporogenesis,and undergoes reorganization on three occasions. During MeiosisI groups of spore mother cells are enclosed in clear areas withinthe plasmodium: by the end of Meiosis II each tetrad is isolatedin a plasmodial chamber; and, finally, mature spores are enclosedwithin individual tapetal chambers. Typically enlarged cellsare present during the development of a cellular, parietal tapetum.A sporopollenin-containing layer or tapetal membrane characteristicof a secretory tapetum develops on the inner tangential walland lines the surface of the loculus. This tapetal membranepersists even after dehiscence of the sporangium. These observationsare discussed in relation to previously published conflictingdata and may be relevant to the arguments concerning the relationshipof the Psilotaceae to the Filicales. Psilotum nudum, light microscopy, parietal tapetum, plasmodial tapetum, tapetal membrane, tapetal reorganization, sporogenesis, sporopollenin  相似文献   

2.
A combination tapetum consisting of a cellular, parietal component and a plasmodial component occurs inSchizaea pectinata. A single, tapetal initial layer divides to form an outer parietal layer which maintains its cellular integrity until late in spore wall development. The inner tapetal layer differentiates into a plasmodium which disappears after the outer exospore has developed. In the final stages of spore wall development, granular material occurs in large masses and is dispersed as small granules throughout the sporangial loculus. No tapetal membrane develops. Comparisons are drawn with the combination tapetum found inPsilotum nudum.  相似文献   

3.
Both the typical form and the appendageless variant of Psilotum nudum produce terminal synangia at the ultimate tips of the aerial axes. One clone in particular of the typical appendaged form produced synangia entirely at the tips of the aerial branches, as in the appendageless variant, and also developed occasional lateral transitional entities on the upper aerial axis displaying appendagelike and axislike morphological qualities. A developmental comparison of synangium development at the ultimate tips of aerial branches and of unusually elongating and normal sized fertile-appendages showed that the morphogenetic pattern of synangium development was similar. Anatomical and morphological evidence showed the synangium to be derived from terminal subdivisions or bifurcations of the apical meristem of each structure studied. This supports the phyletic concept that the synangium of the Psilotaceae is basically terminal to an axis or an axis homologue, and that it probably evolved from terminal bifurcative branching. Occasional multiple sporangium lobes may be formed on a P. nudum synangium which may not be represented by vascular bundles. Two hypothetical phyletic models of synangium evolution are proposed that could be used to explain this phenomenon and which should be tested by further evidence. Typical and appendageless P. nudum were compared in their morphogenetic pattern developed at the upper axis vegetative apical meristem, and a reconciliation was made between the structuring of the apparently disparate forms, which involved the presence or absence of serial ordering in apical derivatives. It is suggested that this could serve as a model for appendage evolution in the family Psilotaceae.  相似文献   

4.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

5.
Following meiosis II in Taxus microsporangia a small proportionof the tetrads regularly degenerated. Despite frequent inequalityin the frequency of ribosomes between the spores of a tetrad,partial degeneration within a tetrad was never observed. Theinitial wall of the young spores was found to resemble the wallof the mother cell in containing a fibrillar layer, and thetwo walls may possess similar isolating properties. The symmetryof the tetrad was regularly iso-bilateral. The formation ofthe sporoderm began as the spores were released into the loculusby the rapid dissolution of the wall of the mother cell. Osmiophilicdroplets emerged from the spore protoplast and entered the wall.The fibrillar layer ceased to be recognizable and the dropletscoalesced to form an outer layer on which up to six sporopolleninlamellae, probably of tapetal origin, were deposited. The accretionof a single layer of sporopollenin droplets, in no recognizablepattern, gave rise to the outer verrucose part of the exine.Cytochemical tests showed that the tapetum was rich in acidphosphatases from the beginning of meiosis. Towards the endof its degeneration the tapetum intruded into the loculus andcould therefore be regarded as partly invasive. Taxus baccata, microsporogenesis, tetrad symmetry, sporoderm  相似文献   

6.
 The ratio of loculus volume to the volume of the entire anther began to increase from the microspore mother cell stage and reached 32.3% at anthesis. The content of the loculus was examined in Lilium during pollen development and two waves could be distinguished. From the premeiotic stage until the vacuolated microspore stage, the loculus consisted of neutral polysaccharides, pectins and proteins. These substances originated from tapetal activity from the premeiotic stage until the young microspore stage. Dictyosomes and rough endoplasmic reticulum seemed to be involved in tapetal secretion, although, in some mitochondria, vesicles progressively developed as early as premeiosis and increased until the young microspore stage, which could reveal their involvement in the secretion process. At this stage, numerous cytoplasmic vesticles containing material similar to the locular material fused with the plasma membrane of the tapetum so that vesicle content was in contact with the loculus. It seems that tapetal and callose wall degradation at the late tetrad stage may also have contributed to the production of material in the loculus. From pollen mitosis to anthesis, the anther loculus contained mainly the pollenkitt which was synthesized in the tapetum between the young microspore stage and the vacuolated microspore stage. At the young microspore stage, proplastids divided and developed into elaioplasts and smooth endoplasmic reticulum (SER) increased dramatically. Pollenkitt had a double origin: some droplets were extruded directly from the plastid stroma through the plastid envelopes; the others were unsaturated lipid globules, which presumably derived from the interaction between SER saccules and plastids. Received: 2 September 1997 / Revision accepted: 12 March 1998  相似文献   

7.
During microsporogenesis and pollen maturation, the tapetumin anthers of tomato (Lycopersicon esculentum) underwent severalultrastructural changes and ultimately degenerated. The changesobserved related to the secretory function of the tapetum andto the transfer of materials from the cytoplasm to the surfaceof tapetal cells. Electron dense deposits, initially in thevacuoles, disappeared coincident with the appearance of orbiculeson the cell wall. The fibrillar wall of the tapetal cells loosened,presumably to facilitate transfer of materials through the wall.In Addition, membranous fragments were a consistent featurein the tapetum wall and may play a role in transport of materials.The cells of the inner tapetum (towards the connective) andouter tapetum (towards the epidermis) had different ultrastructuralfeatures. The cytoplasm of the outer tapetum was more electrondense and had a higher proportion of dictyosomes and mitochondriathan the inner tapetum, indicating the greater secretory natureof the outer tapetum. The plastids and mitochondria also differedin morphology between the two regions. Degenerations of thetapetal cytoplasm began by the vacuolate microspore stage. Atanthesis, cytoplasm was absent but the orbicular wall of thetapetum remained appressed to the wall of the middle layer ofthe anther.Copyright 1993, 1999 Academic Press Lycopersicon esculentum, microsporogenesis, pollen development, tapetum development, tomato, ultrastructure  相似文献   

8.
PANT  D. D.; KHARE  P. K. 《Annals of botany》1971,35(1):151-157
Mature epidermis and cuticles of the two genera of Pailotales,viz. Psilotum nudum and Tmesipteris tannensis and the stomatalontogeny of the latter are described.  相似文献   

9.
Development of the anther wall was studied with special reference to the tapetum in Pyrostegia ignea. The archesporium in each microsporangium is horseshoe-shaped. The inner tapetum develops earlier from the vegetative cells of the connective region while the outer differentiates a little later from the parietal layers. Thus, the tapetum has a distinct dual origin. The two tapetal layers exhibit a pronounced structural dimorphism. Sometimes, sterile septae, partitioning the sporogenous tissue, develop in microsporangia. A prominent membrane with Ubisch granules (orbicules) is organised on the inner tangential surface of the tapetal protoplasts facing the uninucleate microspores.  相似文献   

10.
As meiosis is completed, and following the synthesis of lipidduring meiotic prophase, the tapetum begins to form precursorsof sporopollenin. These accumulate in cisternae of the endoplasmicreticulum, resembling large dictyosome vesicles. They are releasedfrom the tapetal protoplasts intact, but rupture in the loculus.The liberated precursors polymerize either on lipid dropletsin the expanded tapetal walls, forming the orbicules, or onthe lipid layer surrounding the loculus, forming the secondcomponent of the peritapetal membrane. On rupture of the callosewall condensation also proceeds on the walls of the meiospores,already coated with a thin layer of sporopollenin synthesizedby the spore itself. The tapetal protoplasts expand considerablyduring synthesis of the precursors. Wide channels also formbetween the protoplasts, and the nuclei undergo irregular divisions. Ribosomes are conspicuous in the tapetal cytoplasm during thesporopollenin synthesis, but protein levels are low. It is proposedthat protein is exported to the loculus and untimately incorporatedinto the developing microspores. In the final phase of microsporogenesis the tapetum fragments,and parts move into the loculus.Protein levels in the tapetumare now high, possible indicating the massive synthesis of hydrolaseswhich accomplish the dissolution of the tissue. Removal of thelipid component of the peritapetal membrane precedes the desiccationof the anther. The surfaces of the mature pollen lack organizedor irregular deposits of tapetal debris.  相似文献   

11.
It appears that the tapetum is universally present in land plants, even though it is sometimes difficult to recognize, because it serves mostly as a tissue for meiocyte/spore nutrition. In addition to this main function, the tapetum has other functions, namely the production of the locular fluid, the production and release of callase, the conveying of P.A.S. positive material towards the loculus, the formation of exine precursors, viscin threads and orbicules (= Ubisch bodies), the production of sporophytic proteins and enzymes, and of pollenkitt/tryphine. Not all these functions are present in all land plants:Embryophyta. Two main tapetal types are usually distinguished in theSpermatophyta: the secretory or parietal type and the amoeboid or periplasmodial type; in lower groups, however, other types may be recognized, with greater or lesser differences. A hypothetical phylogenesis of the tapetum is proposed on the basis of its morphological appearance and of the nutritional relations with meiocytes/spores. The evolutionary trends of the tapeta tend towards a more and more intimate and increasingly greater contact with the spores/pollen grains. Three evolutionary trends can be recognized: 1) an intrusion of the tapetal cells between the spores, 2) a loss of tapetal cell walls, and 3) increasing nutrition through direct contact in narrow anthers.  相似文献   

12.
An investigation of microsporogenesis in Canna L. revealed thatthe tapetum is invasive but non-plasmodial. Tapetal cell protoplastsare released as individuals. In the loculus they are at firstmore or less spherical but can produce amoeboid processes inlate stages of microsporogenesis. They do not fuse with oneanother. Meiosis is normal and cytokinesis is successive. Theimplications of the novel type of tapetum are discussed. canna, Canna, invasive non-syncytial tapetum, tapetum, microsporogenesis  相似文献   

13.
The covering around the pollinium of Pergularia daemia is sporopolleninin nature. It is homologous to the tapetal membrane investingthe inner tangential surface of the tapetum which is of theSecretory type.  相似文献   

14.
Summary The anther ofCanna indica L. ×C. sp. hybrid contains a hitherto uncharacterized non-syncytial, invasive category of tapetum. With the onset of prophase I the tapetal walls are dissolved and the released protoplasts migrate into the loculus, where they stay discrete. Concomitant with the dissolution of walls the tapetal protoplasts develop a 17 nm thick extracellular granulo-fibrillar cell coat. This feature develops in the synchronous phase of tapetal development. The cell coat reacts positively with ruthenium red, potassium ferrocyanide, ConA-FITC and in the Thiéry reaction. Immunofluorescence microscopy using anti-tubulin revealed that even after the migration of tapetal cells into the loculus, the microtubules retain a predominant orientation in the cell cortex, probably derived from that in the original tapetal walled cells. This order is lost during late post-meiotic stages when the cells distort and can produce amoeboid processes. The microtubule orientation is correlated with that of the cell coat fibrils. Tapetal cells vary in ultrastructure and the density of cell coat fibrils after their migration into the loculus, but the cell coat persists until the cells degenerate. It is surmised that development of the cell coat relates to the lack of cell fusion and that the cortical microtubules help to sustain cell form. During post-meiotic stages the free tapetal cells develop massive peripheral arrays of interconnected ER cisternae, probably as part of a secretory apparatus which matures when the spores are producing their ornamented walls. Buds grown in colchicine solution showed accumulation of sporopolleninlike granules in all extracellular spaces of the anther cavity.  相似文献   

15.
团扇蕨孢子发生和发育的显微观察   总被引:1,自引:0,他引:1  
利用光学显微镜对膜蕨科(Hymenophyllaceae)团扇蕨(Gonocormus minutus(Blume) Bosch)孢子的发生和发育进行了观察。研究结果表明:团扇蕨孢子为多边圆形,三裂缝不明显,外壁表面光滑,周壁薄,紧贴外壁表面,由周壁形成乳头状或颗粒状纹饰。在外壁形成后期,孢子表面和囊腔中出现大量小球;在周壁形成时期,孢子表面和周围出现较多小球体;小球和小球体参与孢子壁的形成。团扇蕨绒毡层为混合型,内层为周原质团绒毡层;外层为腺质型绒毡层。本文为膜蕨科系统演化和发育生物学研究提供依据。  相似文献   

16.
利用光学显微镜和透射电子显微镜观察了红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)孢子囊的发育及在此期间质体的分化过程。研究表明:(1)红盖鳞毛蕨孢子囊的发育类型属于薄囊蕨型;(2)绒毡层为混合型,即内层绒毡层为原生质团型,外层绒毡层为腺质型;(3)孢子囊原始细胞中的质体通过3条路径分化,其一,原始细胞中含淀粉粒的质体通过分裂分配到下方细胞,继而进入孢子囊柄;其二,原始细胞分裂产生的新生质体被分配到上方细胞,进而被分配到除顶细胞外的原基细胞中,顶细胞将含淀粉粒的质体通过分裂分配到外套层原始细胞中;其三,顶细胞也将具淀粉粒的质体通过分裂分配到内部细胞,使分裂产生的孢原细胞和绒毡层原始细胞具新生质体;造孢细胞和孢子母细胞的质体具淀粉粒,孢子母细胞还具油体,新生孢子中具造粉体和油体;两层绒毡层具新生质体,随着退化外层绒毡层出现造粉体,内层绒毡层出现油体;(4)红盖鳞毛蕨与少数被子植物小孢子发育阶段质体分化模式类似,由前质体分化为造粉体再到油体。研究结果为蕨类植物质体在孢子囊发育过程不同组织细胞中的差异分化提供了新观察资料,为蕨类植物发育生物学和系统演化研究提供科学依据。  相似文献   

17.
The pre-meiotic, meiotic and tetrad stages of development in microsporangia of Alsophila setosa were studied with particular emphasis on the early establishment of patterning in the microspore wall and the subsequent development of the sporoderm. The data obtained were compared with corresponding ontogenetic stages of Psilotum nudum. Tapetal behaviour was also examined. During the tetrad period, only one layer, a thin undulating sheet, appeared alongside the plasma membrane of the tetraspores, and this was evidently formed on a pre-patterned structure – a fibrillar layer, corresponding to a kind of primexine matrix. The early free microspores had a wavy plasma membrane with a parallel, sinusoidal, thin initial sporoderm layer. The proximal apertural fold was observed to be an extended outgrowth of this initial spore envelope. Sporoderm ontogeny during the tetrad period in Alsophila and Psilotum show some common points, but also fundamental differences, mainly in the relative timing of events: in Alsophila the end of the tetrad period is the starting point for exospore development, whereas in Psilotum the exospore is already complete at this stage. Considerable differences were also observed in the tapetum of the two species.  相似文献   

18.
The ultrastructure of tapetal cells in Timmiela barbuloideswas investigated in relation to events of sporogenesis. Aftertheir establishment both internally and externally to the sporogonialinitials, tapetal cells enlarge and assume a permanently polarizedorganization after completion of meiosis. A large vacuole isformed in the cell region distal to the spore sac, the nucleusbecomes centrally located, and amyloplasts lie in the cytoplasmadjacent to the spore sac. An extensive endomembrane systemdevelops in tapetal cells during the stage of exine depositionin spore tetrads. Sheets of rough endoplasmic reticulum developfirst around the nucleus then also in close proximity to theplasma membrane abutting the spore sac. Concomitantly, interveningdictyosomes produce a variety of vesicles. Unusual structureswith vesicle-like profiles also occur in the inner tapetum cellwalls abutting the spore sac. At the same time most of the starchis lost from the plastids in which grana-fretwork systems develop.A massive secretion of extremely electron-opaque material isassociated with perine deposition onto the free spore surfaces.Degeneration of the tapetal cells during the terminal stagesof spore maturation is marked by distortion of the organelles,increase in vacuolation and the appearance of electron-opaquematerial between the sheets of endoplasmic reticulum.Copyright1994, 1999 Academic Press Bryophytes, endomembrane dynamics, Timmiella, ultrastructure, development, tapetum  相似文献   

19.
Tapetum of Pulsatilla chinensis is of secretory type. Its development proceeds rapidly in following sequence: (1) The stage of initiation-differentiation. At this stage cytological and histochemical features have been described in detail in this paper. (2) The stage of growth- synthesis: This stage appears to be the most important anabolic phase during the development of the tapetum. The salient features are that the tapetal cells become relatively enlarged and form two polyploid nuclei or aberrent polyploid nuclei resulting in synthetizing maximum proteins, fluorescing substances and maximum fluorescent Pro-Ubisch bodies in the tapetal cytoplasm. (3) The stage of secretion-disorganization: After the disintegration of the tapetal wall the enlarged naked cells appear at once. This is an important secretion period in which Pro-Ubisch bodies as well as all other fluorescing substances, carbohydrate or some enzymes are released into anther loculus. The naked cell layer becomes disorgnized until the beginning divition of the pollen grains into two ceils. As to peritapetal membrane of P. chinensis, mainly based on the membrane being on the outer side of the tapetum enclosing both the pollen, tapetal cytoplasm and Ubisch bodies, and the cellular configurations facing the pollen, Authors postulate that peritapetal membrane might be survival of the cytoplasmic membrane of tapetal cells. However, the peritapetal membrane of P. chinensis is similar to that of plasmodial, tapetum reported in certain Compositae and that of secretory tapetum reported in Pinus banksiana. Heslop-Harrison and Gupta et al. had conceded that the tapetal and peritapetal membrane belong to the general class of sporopollenin. On the contrary in P. chinensis the sporopollenin property of peritapetal membrane is only confined to its inner surface. But the thin mem- brane itself with the reticulate sporopollenin attched on its inner side appears negative staining reactions for sporopollenin though it has an ability to resist the acetolysis as well. In P. chinensis the Ubisch body is short necked flask shaped and their size is very similar. Ubisch body is either single or 2–5 in a group, resulting in compound bodies. When the Pro-Ubisch body is still within the tapetal cell it shows positive fluorescent reaction, while it eomletely unstains with Teluidine blue O. So Authors infer that the sporopollenin precur- sors may have permeated through Pro-Ubisch bodies. Finally, How sporopollenin precursor is synthesized in the tapetal cells, transported to pollen locula and polymerized into the sporopollenin on pollen, Ubisch body and peritapetal membrane? Future works along these problems may yield fruitful results.  相似文献   

20.
Daily analysis of anther samples during flower development hasenabled an estimation of the duration of defined developmentalperiods in pollen of the grass Phalaris tuberosa. A similarsequence of pollen development has been established for ryegrass,Lolium perenne, where changes in activity of wall enzymes havebeen followed using quantitative cytochemical methods. Acidphosphatase, an intine enzyme, showed two periods of activity:during the vacuolate period corresponding to deposition of theintine polysaccharides; and in the maturation period correspondingto cytoplasmic activity. Non-specific esterase showed greatestactivity in the parietal tapetal cells until their dissolutionearly in the vacuolate period when an increase in pollen-associatedactivity occurred. These changes provide additional evidencefor the transfer of tapetal proteins to exine sites. Lolium perenne L., Phalaris tuberosa L., ryegrass, canary grass, pollen development, quantitative cytochemistry, enzyme activities, acid phosphatase, esterase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号