首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeasts Saccharomyces cerevisiae, Candida utilis, and Candida lipolytica were used to investigate the action of different concentrations of fatty acids (from acetic to myristic acid) on cell growth, division, uptake of inorganic phosphate, and substrate oxidation. The former two yeasts were found to undergo an inhibition of growth, cell division, and phosphate uptake at lower acid concentrations and to experience the inhibition of substrate oxidation at higher acid concentrations. The concentration dependence of the action of fatty acids can be classified into four categories: 1) subthreshold concentrations which do not inhibit growth and have either no effect on, or stimulate, oxygen consumption; 2) threshold concentrations which lower the rate of growth, cell division, and phosphate uptake but do not inhibit the oxidation of carbon substrate; 3) above-threshold concentrations which inhibit partially even substrate oxidation, and 4) microbicide concentrations. Candida lipolytica displays the same sensitivity toward the action of fatty acids as the above yeast species; however, the threshold concentrations are higher and can be quickly lowered owing to oxidation by the yeast. The concentrations of fatty acids found in the medium after cultivations of yeast with n-alkanes are of the same order as limiting concentrations; the formation of acids with twelve and less carbons in the molecule can thus be assumed to be one of the basic reasons for lowering of biomass yields during cultivations on these hydrocarbons.  相似文献   

2.
Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C18 chlorinated fatty acids.  相似文献   

3.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

4.
The mechanism(s) of fatty acid uptake by liver cells is not fully understood. We applied new approaches to address long-standing controversies of fatty acid uptake and to distinguish diffusion and protein-based mechanisms. Using HepG2 cells containing an entrapped pH-sensing fluorescence dye, we showed that the addition of oleate (unbound or bound to cyclodextrin) to the external buffer caused a rapid (seconds) and dose-dependent decrease in intracellular pH (pH(in)), indicating diffusion of fatty acids across the plasma membrane. pH(in) returned to its initial value with a time course (in min) that paralleled the metabolism of radiolabeled oleate. Preincubation of cells with the inhibitors phloretin or triacsin C had no effect on the rapid pH(in) drop after the addition of oleate but greatly suppressed pH(in) recovery. Using radiolabeled oleate, we showed that its esterification was almost completely inhibited by phloretin or triacsin C, supporting the correlation between pH(in) recovery and metabolism. We then used a dual-fluorescence assay to study the interaction between HepG2 cells and cis-parinaric acid (PA), a naturally fluorescent but slowly metabolized fatty acid. The fluorescence of PA increased rapidly upon its addition to cells, indicating rapid binding to the plasma membrane; pH(in) decreased rapidly and simultaneously but did not recover within 5 min. Phloretin had no effect on the PA-mediated pH(in) drop or its slow recovery but decreased the absolute fluorescence of membrane-bound PA. Our results show that natural fatty acids rapidly bind to, and diffuse through, the plasma membrane without hindrance by metabolic inhibitors or by an inhibitor of putative membrane-bound fatty acid transporters.  相似文献   

5.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

6.
The utilization of n-hexadecane by Candida lipolytica (stain 10) was studied with respect to the lipid content, phospholipid and fatty acid profiles resulting at various growth times. Thin layer chromatography of the lipid extracts showed quantitative changes in the different lipid classes. The phospholipid fraction obtained at each growth time was separated into 8 classes: lysophosphatidylcholine, sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, glycophospholipid, phosphatidylglycerol, cardiolopin, and phosphatidic acid. Differences in the percentage fatty acid composition of the lipid extracts were observed at various stages of growth. The cellular fatty acids included palmitic, palmitoleic (35-52%), stearic, oleic, linoleic (26-39%), and pentadecanoic (2-12%) as major components. This indicates that fatty acid(s) of the same length as that of the substrate was the most abundant component, thus showing intact incorporation mechaism. Fatty acids having longer chain lengths were also formed in substantial amounts indicating C2 addition and beta-oxidation of the fatty acids formed in the yeast.  相似文献   

7.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

8.
Endogeneous fatty acid biosynthesis in the two yeast species, Saccharomyces cerevisiae and Candida lipolytica is completely repressed by the addition of long-chain fatty acids to the growth medium. In Candida lipolytica, this repression is accompanied by a corresponding loss of fatty acid synthetase activity in the cell homogenate, when the cells were grown on fatty acids as the sole carbon source. The activity of the Saccharomyces cerevisiae fatty acid synthetase, however, remains unaffected by the addition of fatty acids to a glucose-containing growth medium. From fatty-acid-grown Candida lipolytica cells no fatty acid synthetase complex can be isolated, nor is there any immunologically cross-reacting fatty acid synthetase protein detectable in the crude cell extract. From this it is concluded that Candida lipolytica, but not Saccharomyces cerevisiae, is able to adapt to the growth on fatty acids either by repression of fatty acid synthetase biosynthesis or by a fatty-acid-induced proteolytic degradation of the multienzyme complex. Similarly, the fatty acid synthetase complex disappears rapidly from stationary phase Candida lipolytica cells even after growth in fatty-acid-free medium. Finally, it was found that the fatty acid synthetase complexes from Saccharomyces cerevisiae and Candida lipolytica, though very similar in size and subunit composition, were immunologically different and had no common antigenic determinants.  相似文献   

9.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

10.
The alkane-assimilating yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates such as n-alkanes, fatty acids, fats and oils for which it has specific metabolic pathways. An overview of the oxidative degradation pathways for alkanes and triglycerides in Y. lipolytica is given, with new insights arising from the recent genome sequencing of this yeast. This includes the interaction of hydrophobic substrates with yeast cells, their uptake and transport, the primary alkane oxidation to the corresponding fatty alcohols and then by different enzymes to fatty acids, and the subsequent degradation in peroxisomal beta-oxidation or storage into lipid bodies. Several enzymes involved in hydrophobic substrate utilisation belong to multigene families, such as lipases/esterases (LIP genes), cytochromes P450 (ALK genes) and peroxisomal acyl-CoA oxidases (POX genes). Examples are presented demonstrating that wild-type and genetically engineered strains of Y. lipolytica can be used for alkane and fatty-acid bioconversion, such as aroma production, for production of SCP and SCO, for citric acid production, in bioremediation, in fine chemistry, for steroid biotransformation, and in food industry. These examples demonstrate distinct advantages of Y. lipolytica for their use in bioconversion reactions of biotechnologically interesting hydrophobic substrates.  相似文献   

11.
Adipose differentiation related protein (ADRP) is a 50-kDa novel protein cloned from a mouse 1246 adipocyte cDNA library, rapidly induced during adipocyte differentiation. We have examined ADRP function, and we show here that ADRP facilitates fatty acid uptake in COS cells transfected with ADRP cDNA. We demonstrate that uptake of long chain fatty acids was significantly stimulated in a time-dependent fashion in ADRP-expressing COS-7 cells compared with empty vector-transfected control cells. Oleic acid uptake velocity increased significantly in a dose-dependent manner in ADRP-expressing COS-7 cells compared with control cells. The transport Km was 0.051 microM, and Vmax was 57.97 pmol/10(5) cells/min in ADRP-expressing cells, and Km was 0.093 microM and Vmax was 20.13 pmol/10(5) cells/min in control cells. The oleate uptake measured at 4 degrees C was only 10% that at 37 degrees C. ADRP also stimulated uptake of palmitate and arachidonate but had no effect on uptake of medium chain fatty acid such as octanoic acid and glucose. These data suggest that ADRP specifically enhances uptake of long chain fatty acids by increasing the initial rate of uptake and provide novel information about ADRP function as a saturable transport component for long chain fatty acids.  相似文献   

12.
The aim of the present study was to investigate whether unsaturated 2-acyl-lysophosphatidylcholine bound to plasma albumin is a relevant delivery form of unsaturated fatty acids to the developing brain. Twenty-day-old rats were perfused for 30 s with labeled palmitic, oleic, linoleic, and arachidonic acids in either their unesterified form or esterified in 2-acyl-lysophosphatidylcholine labeled on the choline and fatty acid moieties. Both forms were bound to albumin. Incorporation in brain lipid classes was followed within 1 h. The brain uptake of the unesterified fatty acids reached a plateau at 5-15 min and was maximal for arachidonic acid (0.45% of the perfused dose). The brain uptake of palmitoyl-lysophosphatidylcholine was similar to that of palmitic acid, whereas that of other lysophosphatidylcholines increased with the degree of unsaturation (rate and maximal uptake) and was six- to 10-fold higher than that of the corresponding unesterified fatty acid. 2-Acyl-lysophosphatidylcholines were taken up without prior hydrolysis and reacylated into doubly labeled phosphatidylcholine, which was the most labeled lipid class, whereas lipid distribution of the unesterified fatty acid was more diversified. Partial hydrolysis of 2-acyl-lysophosphatidylcholine occurred in the brain tissue, and redistribution of the fatty acyl moiety into other phospholipid classes was also observed and was the highest for arachidonic acid. In this case, the percentage of esterification of this fatty acid in phosphatidylinositol (expressed as a percentage of the total lipid fraction) was relatively lower than that observed when the unesterified form was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
[背景]解脂耶罗维亚酵母属于产油微生物,大量研究表明该酵母能够高产长链脂肪酸和油脂,但是应用该酵母合成超长链脂肪酸仍待研究。[目的]工程化解脂耶罗维亚酵母合成高值超长链脂肪酸,并研究温度对脂肪酸合成的影响。[方法]合成密码子优化的拟南芥(Arabidopsis thaliana)延长酶基因AtFAE1、非洲芥菜(Brassica tournefortii)延长酶基因BtFAE1和碎米芥属植物Cardamine graeca的延长酶基因CgKCS,分别构建质粒pYLEX1-AtFAE1、pYLEX1-BtFAE1、pYLEX1-CgKCS和pYLEX1-AtFAE1-BtFAE1-CgKCS。以解脂耶罗维亚酵母菌株Po1g为宿主,通过化学法分别转化上述4个质粒,获得工程菌Po1g-AtFAE1、Po1g-BtFAE1、Po1g-CgKCS和Po1g-AtFAE1-BtFAE1-CgKCS,比较评价超长链脂肪酸的合成。在此基础上,过表达内源二酯酰甘油酰基转移酶基因DGAT1(diacylglycerol acyltransferase)提高产油量,并研究温度对生物量、产油、脂肪酸组成的影响...  相似文献   

14.
Adriamycin transport and sensitivity in fatty acid-modified leukemia cells   总被引:5,自引:0,他引:5  
The membrane phospholipids of L1210 murine leukemia cells were modified by supplementing the growth medium with micromolar concentrations of polyunsaturated or monounsaturated fatty acids. This procedure results in enrichment of cellular phospholipids by the supplemented fatty acid. Enrichment with polyunsaturated fatty acids resulted in a marked increase in sensitivity to adriamycin as compared to enrichment with monounsaturated fatty acids. The increased cytotoxicity was directly proportional to the extent of unsaturation of the inserted fatty acid, but there was no difference in cells enriched with n-3 compared with n-6 family fatty acids. To explore the mechanism of this observation, we examined whether augmented uptake of the drug might explain the increased cytotoxicity. The uptake of [14C]adriamycin, which was approximately linear at later time points, was only partially temperature dependent and never reached a steady state. Initial uptake at time points prior to 60 s could not be measured due to high and variable rapid membrane adsorption. Cellular accumulation of drug was greater in the docosahexaenoate 22:6-enriched L1210 cells as compared to oleate 18:1-enriched cells and was about 32% greater after 20 min. When L1210 cells were enriched with six fatty acids of variable degrees of unsaturation, the accumulation of adriamycin was directly correlated with the average number of double bonds in the fatty acids contained in cellular phospholipids. There was no difference in efflux of drug from cells pre-loaded with adriamycin. We conclude that the greater accumulation of adriamycin by the polyunsaturated fatty acid-enriched L1210 cells likely explains the increased sensitivity of these cells to adriamycin compared to 18:1-enriched cells.  相似文献   

15.
Glycine uptake was investigated in cultured Y79 retinoblastoma cells containing different degrees of phospholipid fatty acid unsaturation. The modifications were produced by growing the retinoblastoma cells in medium supplemented with various unsaturated fatty acids. Glycine was taken up by the retinoblastoma cells through two kinetically distinguishable process. The high-affinity system is totally dependent upon extracellular Na+ and partially dependent upon Ca2+. Of the glycine taken up by retinoblastoma cells, 85-90% remains as free intracellular glycine and less than 30% is incorporated into cellular protein. When the cells are grown in a medium containing 10% fetal bovine serum as the only source of fatty acids, the phospholipids contained 23% polyunsaturated fatty acids. Under these conditions the high-affinity system has a K'm of 34.2 +/- 3.7 micrometers and a V'max of 91.2 +/- 16.2 pmol min-1 mg protein -1. The low-affinity system has a K'm of 2.7 +/- 0.4 mM and a V'max of 4.1 +/- 0.5 nmol min-1 mg protein-1. When the polyunsaturated fatty acid content of the phospholipids was increased by supplementing the medium with linolenic or docosahexaenoic acids (n-3 polyunsaturates) or linoleic or arachidonic acids (n-6 polyunsaturates), the K'm and V'max of the high-affinity glycine uptake system were increased three- to fourfold. By contrast, supplementing the medium with oleic acid, and n-9 monounsaturate, did not significantly alter the K'm or V'max for glycine uptake. The results with this model system suggest that one of the effects of the high polyunsaturated fatty acid content normally present in neural cell membranes may be a modulation of the high-affinity transport system so that it functions more efficiently in regulating glycine uptake.  相似文献   

16.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

17.
Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent Vmax and Km values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.  相似文献   

18.
19.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

20.
We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H] arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool. These studies show that preexisting pools of essential and nonessential fatty acids exert different effects on the uptake and subsequent releasability of a pulse of arachidonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号