共查询到20条相似文献,搜索用时 14 毫秒
1.
V. Jaaska 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1978,53(5):209-217
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed. 相似文献
2.
E. W. Cole J. G. Fullington D. D. Kasarda 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1981,60(1):17-30
Summary Total proteins were extracted from degermed seeds of various species of Triticum and Aegilops with solutions containing sodium dodecyl sulfate (SDS) and mercaptoethanol. The reduced, dissociated proteins were fractionated according to molecular weight (MW) by high-resolution polyacrylamide gel electrophoresis in buffers containing SDS (SDS-PAGE). Stained SDS-PAGE patterns were measured by densitometric scanning over a suitable range of optical density. The data were normalized to equivalent total areas for each of the densitometric scans by means of a computer program that also permitted the construction of patterns of hypothetical amphiploids by averaging patterns of two or three diploid species. The grain proteins of most species examined had distinctive qualitative and quantitative aspects that were characteristic of the species even though nearly every accession or cultivar of a species exhibited at least minor differences in pattern from other accessions or cultivars. The main protein components (probably prolamins) of Triticum monococcum ssp. monococcum, T. monococcum ssp. boeoticum, T. urartu, and Aegilops squarrosa had MW's in the range 29–36 X 103 whereas the most important components of Ae. speltoides, Ae. longissima, and Ae. searsii had MW's in the range 37–55 × 103. Changes in the quantitative expression of particular genes, especially those coding for storage protein components, may have been associated with speciation. The strong predominance of proteins with MW's in the range 29–36 × 103 in some accessions of AB genome tetraploids, such as T. turgidum ssp. dicoccoides, may indicate contributions to the B genome of these tetraploids by T. monococcum ssp. boeoticum, T. urartu, or Ae. squarrosa. 相似文献
3.
Twenty enzyme loci were examined in the diploid species ofTriticum andAegilops for allelic variation by starch gel electrophoresis. SectionSitopsis, including the five species,Ae. speltoides, Ae. lingissima, Ae. sharonensis, Ae. bicornis andAe. searsii form a close subgroup withAe. speltoides slightly removed from the others.T. monococcum s. lat., was found to be closest to the species of theSitopsis group.Ae. comosa, Ae. umbellulata andAe. uniaristata form a second subgroup withAe. caudata most closely related to these species.Ae. squarrosa appears almost equally related to all of the species, showing no special affinity for any one species group. Nineteen out of twenty loci examined were polymorphic with a mean of 6.7 alleles per locus. Species could be, for most loci, characterized by the presence of predominant alleles. A conspicious genetic characteristic ofTriticum-Aegilops is the sharing of these predominant alleles between species. Within species variation is characterized by a diffuse distribution of secondary alleles. 相似文献
4.
A. Breiman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,73(4):563-570
Summary Southern blot hybridization of total DNA to defined mitochondrial DNA sequences provides a sensitive assay for mtDNA variation in the genera of Triticum and Aegilops. A clear distinction between cytoplasms of tetraploid species sharing the AG haploid genome is reported for the first time. The Sitopsis section of the genus Aegilops showed the most extensive intra- and inter-specific variation, whereas no variation could be detected among the cytoplasms of polyploid Triticum species (wheats) sharing the AB haploid genome. Extensive cytoplasmic intraspecific diversity was revealed in Ae. speltoides. 相似文献
5.
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K
m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K
m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K
m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities. 相似文献
6.
K. A. Golovnina S. A. Glushkov A. G. Blinov V. I. Mayorov L. R. Adkison N. P. Goncharov 《Plant Systematics and Evolution》2007,264(3-4):195-216
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the
closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections
Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance
of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization
events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However,
G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification
of Acc-1 gene. 相似文献
7.
C. M. Bowman 《Planta》1986,167(2):264-274
The possibility of estimating the proportion of chloroplast DNA (ctDNA) and nuclear DNA (nDNA) in nucleic-acid extracts by selective digestion with the methylation-sensitive restriction enzyme PstI, was tested using leaf extracts from Spinacia oleracea and Triticum aestivum. Values of ctDNA as percentage nDNA were estimated to be 14.58%±0.56 (SE) in S. oleracea leaves and 4.97%±0.36 (SE) in T. aestivum leaves. These estimates agree well with those already reported for the same type of leaf material. Selective digestion and quantitative dot-blot hybridisation were used to determine ctDNA as percentage nDNA in expanded leaf tissue from species of Triticum and Aegilops representing three levels of nuclear ploidy and six types of cytoplasm. No significant differences in leaf ctDNA content were detected: in the diploids the leaf ctDNA percentage ranged between 3.8% and 5.1%, and in the polyploids between 3.5% and 4.9%. Consequently, nuclear ploidy and nDNA amount were proportional to ctDNA amount (r(19)=0.935, P>0.01) and hence to ctDNA copy number in the mature mesophyll cells of these species. There was a slight increase in ctDNA copy numbers per chloroplast at higher ploidy levels. The balance between numbers of nuclear and chloroplast genomes is discussed in relation to polyploidisation and to the nuclear control of ctDNA replication.Abbreviations ctDNA
chloroplast DNA
- nDNA
nuclear DNA
- RuBPCase
ribulose-1,5-bisphosphate carboxylase
- DAPI
4,6-diamidine-2-phenylindole 相似文献
8.
Vello Jaaska 《Plant Systematics and Evolution》1981,137(4):259-273
Polyacrylamide gel electrophoresis of aspartate aminotransferase (AAT, EC 2.6.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) isoenzymes reveals intraspecific differentiation ofAegilops tauschii Coss. (=Ae. squarrosa auct., non L.) into two groups of biotypes which essentially correspond to its two morphological subspecies, subsp.tauschii and subsp.strangulata (Eig)Tzvel. Subsp.tauschii which is characterized by a slower electromorph of AAT-B and a faster electromorph of ADH-A is identified as the contributor of its D genome to the tetraploidAe. cylindrica
Host and the hexaploidAe. crassa
Boiss. subsp.crassa. Subsp.strangulata, being distinguished by a faster electromorph of AAT-B and a slower electromorph of ADH-A, has contributed the D genome to the hexaploid bread wheats (Triticum aestivum L. emend.Thell.), the tetraploidsAe. crassa subsp.macrathera (Boiss.)Zhuk. andAe. ventricosa
Tausch, and the hexaploidAe. juvenalis (Thell.)Eig. —Aegilops comosa
Sibth. etSm. s. lat. is questioned as the contributor of the M genome toAe. crassa. Furthermore, the S genome diploidsAe. bicornis (Forsk.)Jaub. & Spach,Ae. longissima
Schweinf. & Muschl. s. lat. andAe. searsii
Feldman & Kislev are all considered unsuitable as the wheat B genome donors on the basis of the AAT isoenzyme data. 相似文献
9.
Cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.) incorporated 2,4-dichlorophenoxyacetic acid (2,4-D) into a metabolite fraction which was insoluble in ethanol, water, and hot sodium dodecylsulphate. Further treatment with hot dimethylformamide solubilized a material which by the following criteria appeared to consist of 2,4-D derivatives covalently bound to lignin: i) co-chromatography of radioactivity and of UV-absorbing material upon gel permeation chromatography; ii) spectral similarity with authentic lignins (IR- and UV-spectra, phloroglucinol reaction), 2,4-D appeared to be incorporated as the intact molecule, as shown by comparison of ring- and sidechain-labeled 2,4-D and by detection of monohydroxylated and intact 2,4-D as the major radioactive products of acid hydrolysis. The same compounds were released from the metabolite material which could not be solubilized in dimethylformamide. The incorporation of xenobiotics or their metabolites into lignin, followed by deposition in the cell wall, is suggested as a general pathway for local excretion and detoxification by plant cells.Abbreviations 2,4-D
2,4-dichlorophenoxyacetic acid
- 4-OH-2,5-D
4-hydroxy-2,5-dichlorophenoxyacetic acid
- SDS
sodium dodecylsulphate
- DMF
dimethylformamide 相似文献
10.
The ultrastructure and distribution of the Golgi apparatus in developing wheat endosperm was investigated using a zinc iodide-osmium tetroxide staining complex in conjunction with low and high voltage electron microscopy. Dictyosomes were numerous in starchy endosperm and aleurone at 15 days after anthesis, and during the period of rapid storage protein deposition 25 d after anthesis. Fewer dictyosomes were seen in maturing endosperm. Two types of vesicles were associated with the dictyosomes; small, heavily-stained vesicles were sited at the ends of fine tubules which extend from the cisternae, and larger less-stained vesicles were associated with the periphery of the cisternae. Stereo-pairs of micrographs up to 1 m thick were taken to demonstrate the interconnections between cisternal and tubular endoplasmic reticulum. Elements of tubular ER were closely associated with dictyosomes, but connections were not observed. These results are discussed in relation to the transport of endosperm storage proteins from their site of synthesis on the cisternal ER to their site of storage, the protein bodies. 相似文献
11.
Nuclear and cytoplasmic gene control of resistance to loose smut (Ustilago tritici (Pers.) Rostr.) in wheat (Triticum aestivum L.) 总被引:1,自引:0,他引:1
P. Dhitaphichit P. Jones E. M. Keane 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(6):897-903
Summary Using disomic chromosome substitution lines based on the susceptible wheat cultivar Chinese Spring, loose smut resistance of wheat cultivars Hope and Thatcher was shown to be conferred in each case by a single dominant major gene carried on chromosome 7 A (Hope) or 7 B (Thatcher). Partial resistance was determined by genes on an additional eight Hope or seven Thatcher chromosomes, and similarities were evident between the partial resistance genotypes ofHope and Thatcher. Chinese Spring exhibited a mean infection value of approximately 50%, indicating a significant level of partial resistance, which was found to be due, in part, to genes on the homoeologous chromosome arms 1 As, 1 Es and 1 Ds, and to cytoplasmic genes. Substitution of the Chinese Spring nucleus into the cytoplasm of Aegilops squarrosa, Ae. variabilis or Ae. mutica resulted in increased susceptibility to Ustilago tritici. Several alloplasmic lines of the resistant wheat cultivars Selkirk and Chris exhibited race-specific susceptibility to U. tritici. 相似文献
12.
K. N. Suseelan C. R. Bhatia S. Eapen 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,62(1):45-48
Summary Two NAD-dependent alcohol dehydrogenases ADH-1 and ADH-2, under independent genetic control of genes designated as Adh-1 and Adh-2 located on chromosomes 4A, 4B and 4D, have been reported in aestivum wheat (Hart 1980). Only ADH-1 is expressed in developing seeds, dry seeds, pollen and germinating seedlings. ADH-2 can be induced in seedling roots or shoots under conditions of partial anaerobiosis or by certain chemicals. Expression of ADH-1 and ADH-2 isoenzymes was investigated in undifferentiated calli from aestivum and durum wheats, rye, triticale and also in in vitro regenerated roots and leaves from aestivum cultures. Wheat callus cultures originating from seed, mature and immature embryos, mesocotyl and root, as well as cultures grown on media containing different supplements did not show any variation in the overall expression of ADH-1 or ADH-2, although differences in the band intensities were observed. The callus isoenzyme pattern was similar to that observed in roots under anaerobic conditions. Both ADH-1 and ADH-2 were expressed in in vitro regenerated roots but were absent in regenerated leaves. Expression of ADH-1 and ADH-2 in wheat calli seems to be related to the type of differentiation. 相似文献
13.
Summary Differentiated mesophyll cells ofTriticum aestivum (cv. Star) exhibit a lobed outline resembling tube-shaped balloons with almost regularly spaced constrictions. It was shown that these constrictions are probably the result of hoops of wall reinforcements laid down during early stages of cell expansion. It appears that these hoops prevent expansion in the corresponding regions and thus give rise to the peculiar cell shape. The comparatively thin cell walls of the bulges are uniformly reinforced after the lobed shape is established.By using immunofluorescence techniques a change in the pattern of cortical microtubule arrangement was observed which corresponded to the pattern of cell wall deposition. Discrete bands of microtubules were found beneath the sites of hoop reinforcement. These bands disintegrated during late stages of cell expansion with microtubules fanning out into the almost empty regions of the bulges.Abbreviations DMSO
dimethyl sulfoxid
- EGTA
ethylene glycol bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid
- FITC
fluorescein isothiocyanat
- MSB
microtubule stabilizing buffer
- PBS
phosphate buffered saline
- PIPES
1,4-piperazine diethanesulfonic acid
- PMSF
phenylmethyl sulfonylfluoride 相似文献
14.
Pieter W. H. Heinstra 《Genetica》1993,92(1):1-22
Evolutionary genetics embodies a broad research area that ranges from the DNA level to studies of genetic aspects in populations. In all cases the purpose is to determine the impact of genetic variation on evolutionary change. The broad range of evolutionary genetics requires the involvement of a diverse group of researchers: molecular biologists, (population) geneticists, biochemists, physiologists, ecologists, ethologists and theorists, each of which has its own insights and interests. For example, biochemists are often not concerned with the physiological function of a protein (with respect to pH, substrates, temperature, etc.), while ecologists, in turn, are often not interested in the biochemical-physiological aspects underlying the traits they study. This review deals with several evolutionary aspects of the Drosophila alcohol dehydrogenase gene-enzyme system, and includes my own personal viewpoints. I have tried to condense and integrate the current knowledge in this field as it has developed since the comprehensive review by van Delden (1982). Details on specific issues may be gained from Sofer and Martin (1987), Sullivan, Atkinson and Starmer (1990); Chambers (1988, 1991); Geer, Miller and Heinstra (1991); and Winberg and McKinley-McKee (1992).Dedicated to Professor Billy W. Geer, because of his contributions to knowledge of the biochemical genetics of Drosophila. 相似文献
15.
The activity of a range of endo- and exopeptidase enzymes have been measured in the glumes, flag leaf and stem during the period of grain development in wheat. The enzymes show a sequential pattern of appearance with activity peaks occurring at a number of intervals from anthesis until just prior to the cessation of grain growth. Of the enzymes studied only the haemoglobin- and casein-degrading activity and alanylglycine-dipeptidase activity increased during the period of rapid protein loss, while aminopeptidase, carboxypeptidase and leucyltyrosine dipeptidase reached maximum activity prior to this period. 相似文献
16.
N. Bahrman H. Thiellement 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,74(2):218-223
Summary Two-dimensional gel electrophoresis was conducted on etiolated seedling proteins from two distinct amphiploids (ABD1, ABD2) and their parental lines (AB1, D1 and AB2, D2), AB1 and AB2 being used as female. On the amphiploid patterns were found all the parental spots except 8 D spots of which 3 are cytoplasmically encoded. One exceptional polypeptide observed in ABD1 was present neither in AB1 nor D1. The patterns fromt the amphiploids very closely resemble the co-electrophoresis done with 1/3 D protein extract and 2/3 AB protein extract. Thus it is very likely that for most gene products revealed the genomes act independently of each other. 相似文献
17.
Mark B. Peoples Vyrna C. Beilharz Stephen P. Waters Richard J. Simpson Michael J. Dalling 《Planta》1980,149(3):241-251
The flag leaf of wheat was examined for changes in quantity and activity of ribulose-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39), in the proteolytic degradation of RuBPCase and other native proteins, and in the ultrastructure of the leaf cells during grain development. Proteolytic degradation of RuBPCase at pH 4.8 increased until 8–10 d after anthesis, then declined, and increased again 16–18 d after anthesis. The second peak coincided with the onset of a preferential loss of immunologically recognizable RuBPCase. The specific activity and number of active sites per molecule of RuBPCase did not change during senescence. Examination of ultrastructure with the electron microscope showed little change in the appearance of the mitochondria as the flag leaf aged. Prominent cristae were still evident 35 d after anthesis. In contrast, the chloroplasts showed a progressive disruption of the thylakoid structure and an increasing number of osmiophilic glubules. The double membrane envelope surrounding the chloroplast appeared intact until at least 20 d after anthesis. The tonoplast also appeared intact up to 20 d. At later stages of senescence of the leaf the outer membrane of the chloroplast adjacent to the tonoplast appeared to break but the inner membrane of the envelope appeared intact until at least 35 d after anthesis.Abbreviation RuBPCase
ribulose-1,5-bisphosphate carboxylase (EC. 4.1.1.39)
I=Waters et al. 1980 相似文献
18.
Varshney Alok Altpeter Fredy 《Molecular breeding : new strategies in plant improvement》2002,8(4):295-309
In order to efficiently complement traditional wheat breeding with genetic transformation technology it will be desirable to introduce transgenes into the ideal genetic background. Poor tissue culture performance is limiting the number of wheat genotypes that can be stably transformed. We statistically analysed the tissue culture response of 38 current European winter wheats and discuss genetic factors influencing this trait. Although regenerable callus cultures could be initiated from immature embryos of all 38 winter wheats analysed, the number of regenerated plants per cultured explant differed highly significantly (p<0.01) among genotypes. Ten cultivars with excellent ranking in this parameter were selected for transformation experiments. Independent transgenic plants were recovered from nine winter wheat genotypes with a frequency ranging between 0.2% and 2.0% of the cultured immature embryos after biolistic transfer of the bar gene and bialaphos selection. The nine transformable winter wheat genotypes included a recently released high-yielding, disease-resistant cultivar (cv. Certo), well established cultivars with elite bread-making quality (cv. Tarso, Alidos) and current breeding lines differing in yield, disease resistance and grain quality. Transgene integration and expression were confirmed by Southern blot analysis, polymerase chain reaction, phosphinothricin acetyltransferase activity assay and herbicide application. Transgene expression was stably transmitted to the sexual progeny of all transgenic lines analysed and segregated in a Mendelian fashion in the majority of lines. The introduction of transgenes into the ideal genetic background will allow a thorough evaluation of their crop improvement potential. 相似文献
19.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn
gibberellin An
- HPLC
high-performance liquid chromatography 相似文献
20.
Dr. V. Jaaska 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1980,56(6):273-284
Summary Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats. 相似文献