首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
pcb genes, encoding proteins binding light-harvesting chlorophylls, were cloned and sequenced from the Chl d-containing cyanobacterium, Acaryochloris marina, and the Chl b-containing cyanobacterium, Prochloron didemni. Both organisms contained two tandem pcb genes. Peptide fingerprinting confirmed the expression of one of the A. marina pcb genes. Phylogenetic tree reconstruction using distance-matrix and maximum-likelihood methods indicated a single origin of the pcb gene family, whether occurring in Chl b-containing or Chl d-containing organisms. This may indicate widespread lateral transfer of the Pcb protein-based light-harvesting system.  相似文献   

2.
C. Wilhelm  I. Wiedemann  M. May 《Planta》1990,180(3):456-457
The major light-harvesting complexes from Mantoniella squamata (Prasinophyceae) and from Chlorella fusca (Chlorophyceae) were analyzed with respect to polypeptide composition and pigmentation. It was found that the polypeptides of Mantoniella are smaller than those of Chlorella and bind twice the amount of pigment. We assume that the amount of pigment per polypeptide is of ecological as well as of taxonomical importance.Abbreviations Chl chlorophyll - LHC light-harvesting complex - Xan xanthophyll We thank the support by the Deutsche Forschungsgemeinschaft.  相似文献   

3.
Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.  相似文献   

4.
M. Vesk  D. Dwarte  S. Fowler  R. G. Hiller 《Protoplasma》1992,170(3-4):166-176
Summary Immunocytochemical techniques using colloidal gold as the marker have been used to examine the location of the two light harvesting pigment-protein complexes in cryptophyte chloroplasts. A comparison of post-embedding thin section labelling and freeze fracture labelling has been carried out onRhodomonas salina using polyclonal antibodies to a chlorophylla/c 2 light-harvesting complex, phycoerythrin and the -subunit of phycoerythrin. The effect of different fixation procedures on the intensity of labelling and ac curacy of antigen location have been examined and the effectiveness of uranyl acetate and tannic acid in improving both the preservation of thylakoid structure and labelling density of phycoerythrin has been demonstrated. Freeze fracture labelling gives better spatial res olution of the different antigens than post-embedding labelling, as well as better definition of thylakoid membranes. It confirms the location of phycoerythrin in the thylakoid lumen and the location of the chlorophylla/c 2 LHC in both appressed and unappressed thylakoid membranes.Abbreviations PE phycoerythrin - chl chlorophyll - LHC light-har-vesting complex  相似文献   

5.
Synthetic single α-helix hydrophobic polypeptides, which have similar amino acid sequences to the hydrophobic core in the native light-harvesting 1-β polypeptide from Rhodobacter sphaeroides, formed Zn porphyrin complexes on a gold electrode, as well as in n-octyl-β-glucoside micelles: this process is dependent on the structure of the pigments and the polypeptides. Interestingly, an enhanced photoelectric current was observed when Zn mesoporphyrin monomer complexed with the synthetic light-harvesting model polypeptide in an α-helical configuration was assembled with a defined orientation onto the electrode. Analog of these light-harvesting model complexes are also useful in providing insights into the effect of polypeptide structure on the formation of light-harvesting complexes on and off electrodes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A role for the peripheral (B800-850) light-harvesting complex in vesicularization of the Rhodobacter sphaeroides intracytoplasmic membrane (ICM), suggested from studies in mutant strains lacking one or more of the pigment-protein complexes, was examined further in the wild-type strain NCIB 8253 grown at high (∼1000 W m–2), moderate (∼300 W m–2), and low (∼100 W m–2) light intensities. The resulting ICM vesicles (chromatophores) had B800-850 levels related inversely to irradiance and banded in rate-zone sedimentation at ∼1.10, 1.09, and 1.07 g ml–1, respectively. Equilibrium centrifugation on iso-osmotic gradients indicated that this distinct sedimentation behavior resulted solely from differences in hydrodynamic radii. These size differences were confirmed by gel-exclusion chromatography and in electron micrographs of thin-sectioned cells. A pulse-chase study of ICM growth following a tenfold reduction in light intensity showed a relatively slow equilibration of membrane proteins during adaptation, and that new protein was incorporated largely into additional ICM formed at the lowered illumination level, giving rise to chromatophores of reduced size and elevated B800-850 content. These results provide further evidence for a model in which the B800-850 complex both drives development of vesicular ICM in Rba. sphaeroides and determines the size of resulting vesicles. Received: 12 October 1995 / Accepted: 21 December 1995  相似文献   

7.
Tiago Barros 《BBA》2009,1787(6):753-2925
The chlorophyll a/b light-harvesting complex of photosystem II (LHC-II) collects most of the solar energy in the biosphere. LHC-II is the prototype of a highly conserved family of membrane proteins that fuels plant photosynthesis in the conversion of excitation energy into biologically useful chemical energy. In addition, LHC-II plays an important role in the organisation of the thylakoid membrane, the structure of the photosynthetic apparatus, the regulation of energy flow between the two photosystems, and in the controlled dissipation of excess excitation energy under light stress. Our current understanding of the sophisticated mechanisms behind each of these processes has profited greatly from the progress made over the past two decades in determining the structure of the complex. This review presents the developments and breakthroughs that ultimately lead to the high-resolution structure of LHC-II. Based on an alignment of the remarkably well engineered and highly conserved LHC polypeptide, we propose several key features of the LHC-II structure that are likely to be present in all members of the LHC family. Finally, some recently proposed mechanisms of energy-dependent non-photochemical quenching (NPQ) are examined from a structural perspective.  相似文献   

8.
9.
H. Paulsen  U. Rümler  W. Rüdiger 《Planta》1990,181(2):204-211
A gene for a light-harvesting chlorophyll (Chl) a/b-binding protein (LHCP) from pea (Pisum sativum L.) has been cloned in a bacterial expression vector. Bacteria (Escherichia coli) transformed with this construct produced up to 20% of their protein as pLHCP, a derivative of the authentic precursor protein coded for by the pea gene with three amino-terminal amino acids added and-or exchanged, or as a truncated LHCP carrying a short amino-terminal deletion into the mature protein sequence. Following the procedure of Plumley and Schmidt (1987, Proc. Natl. Acad. Sci. USA84, 146–150), all bacteria-produced LHCP derivatives can be reconstituted with acetone extracts from pea thylakoids or with isolated pigments to yield pigment-protein complexes that are stable during partially denaturing polyacrylamide-gel electrophoresis. The spectroscopic properties of these complexes closely resemble those of the light-harvesting complex associated with photosystem II (LHCII) isolated from pea thylakoids. The pigment requirement for the reconstitution is highly specific for the pigments found in native LHCII: Chl a and b as well as at least two out of three xanthophylls are necessary. Varying the Chl a:Chl b ratios in the reconstitution mixtures changes the yields of complex formed but not the Chl a:Chl b ratio in the complex. We conclude that LHCP-pigment assembly in vitro is highly specific and that the complexes formed are structurally similar to LHCII. The N-terminal region of the protein can be varied without affecting complex formation and therefore does not seem to be involved in pigment binding. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

10.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm.  相似文献   

11.
Total RNA was isolated from the diatom Cyclotella cryptica and separated into poly(A)+ and poly(A) fractions. These fractions were subjected to in vitro translation/immunoprecipitation experiments using an antiserum directed against the predominant light-harvesting complex of Cy. cryptica (ccry antiserum) and a heterologous antiserum raised against the light-harvesting complex of the cryptophyte Cryptomonas maculata (cmac antiserum). From translation reactions programmed with poly(A)+ RNA the ccry-antiserum immunoprecipitated polypeptides with relative molecular weights (Mr) of 27 000, 25 000, 23 000 and 21 000, while the cmac-antiserum precipitated proteins with Mrs of 32 500 and 27 000, respectively. Subsequent cDNA synthesis and immunological screening of the cDNA library with both antisera resulted in the isolation of six cDNA clones encoding light-harvesting subunits. Full-length precursors were 199-210 amino acids in length and had Mrs of 20 000–23 000. The lengths of the putative signal peptides were 29 or 30 amino acids. Pairwise comparison revealed that the similarity between the clones ranged from 54–99% on the nucleotide level and from 36–99% at the amino acid level. In agreement with the data from the screens with the two antisera, the genes clustered into two groups. The data provide evidence that the genes constitute a heterogeneous multigene family and that the light-harvesting system of Cy. cryptica might be as complex as that of higher plants and green algae. Received: 23 March 1998 / Accepted: 25 July 1998  相似文献   

12.
The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown. Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp. PCC 6803 (Yao et al. J Biol Chem 282:267–276, 2007). Here we show that ScpB associates with Photosystem II at normal growth conditions. Moreover, upon introduction of a construct into Synechocystis so that ScpB is expressed continuously under normal growth conditions, ScpE was detected under non-stressed conditions as well, and was copurified with tagged ScpB and Photosystem II. We also report on a one-helix protein, Slr1544, that is somewhat similar to the SCPs and whose gene is cotranscribed with that of ScpD; Slr1544 is another member of the extended light-harvesting-like (Lil) protein family, and we propose to name it LilA. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Galyna Kufryk and Miguel Hernandez-Prieto have contributed equally to this work.  相似文献   

13.
Summary The repartition of light-harvesting complex (LHC) and photosystem I (PS I) complex has been examined in isolated plastids ofFucus serratus by immunocytochemical labelling. LHC is distributed equally all along the length of thylakoid membranes, without any special repartition in the appressed membranes of the three associated thylakoids ofFucus. PS I is present on all the thylakoid membranes, but the external membranes of the three associated thylakoids are largely enriched relatively to the inner ones. This specific repartition of PSI on non-appressed membranes can be compared to the localization of PSI on stroma thylakoid membranes of higher plants and green algae. Consequently, although they share some common features with those of higher plants and green algae, the appressions of thylakoids in brown algae has neither the same structure nor the same functional role as typical grana stacked membranes in the repartition of the harvested energy.Abbreviations BSA bovine serum albumin - GAR goat anti-rabbit immunoglobulin G - LHC light-harvesting complex - PBS phosphatebuffered saline - PS I photosystem I - PS II photosystem II  相似文献   

14.
Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.  相似文献   

15.
The survival under drough conditions for one year of 12 heterocystous cyanobacterial strains inoculated in three different soil types (silt clay, calcareous clay and silt loam) gave the highest survival (50%) forScytonema 208L.Fischerella 288L andNostoc OP25 also showed significant survival. Moreover, the soils inoculated withFischerella 288L andScytonema 208L had a higher total N content than non-inoculated soils.  相似文献   

16.
Optimum conditions for growth of cyanobacteria on solid media   总被引:7,自引:0,他引:7  
The colony forming ability of single cells or very short filaments of 7 strains of cyanobacteria was tested on media solidified by agar or by agar substitutes (Gel Gro or Gel Rite). In addition, the effect of various methods for preparation of agar media on colony forming ability was measured. High efficiency colony formation for most of the strains required that the agar be autoclaved separately from the salts in the medium. The addition of thiosulfate, but not buffer, significantly increased the plating efficiency of most strains.  相似文献   

17.
Klaus Apel  Klaus Kloppstech 《Planta》1980,150(5):426-430
The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein (LHCP) is investigated in wild-type barley (Hordeum vulgare L.) and in the chlorophyll b-less mutant chlorina f2. In dark-grown plants a short red light pulse triggers the appearance of mRNA activity for the LHCP. While the accumulation of this mRNA is controlled by phytochrome (Apel (1979) Eur. J. Biochem. 97, 183–188), the red light treatment is not sufficient to induce the appearance of the LHCP within the membrane. Thus, at least one of the subsequent steps in the biosynthetic pathway leading to the assembly of the LHCP is controlled by light. The red light-induced mRNA is taken up into the polysomes during the subsequent dark period and is translated in vitro in a cell-free protein synthesizing system. However, an accumulation of the freshly synthesized polypeptide within the plant is not observed. The apparent instability of the polypeptide might be explained by the deficiency of chlorophyll in the red light-treated plants. In the chlorophyll b-less barley mutant chlorina f2 an accumulation of the freshly synthesized apoprotein of the LHCP can be observed in the light. Thus, chlorophyll a formation seems to be a light-dependent step which is required for the stabilization of the LHCP.Abbreviations mRNA messenger RNA - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecylsulfate - LHCP light-harvesting chlorophyll a/b protein  相似文献   

18.
Electric field-induced absorption changes (electrochromism or Stark effect) of the light-harvesting PSII pigment-protein complexes LHCIIb, CP29, CP26 and CP24 were investigated. The results indicate the lack of strong intermolecular interactions in the chlorophyll a (Chl a) pools of all complexes. Characteristic features occur in the electronic spectrum of Chl b, which reflect the increased values of dipole moment and polarizability differences between the ground and excited states of interacting pigment systems. The strong Stark signal recorded for LHCIIb at 650-655 nm is much weaker in CP29, where it is replaced by a unique Stark band at 639 nm. Electrochromism of Chl b in CP26 and CP24 is significantly weaker but increased electrochromic parameters were also noticed for the Chl b transition at 650 nm. The spectra in the blue region are dominated by xanthophylls. The differences in Stark spectra of Chl b are linked to differences in pigment content and organization in individual complexes and point to the possibility of electron exchange interactions between energetically similar and closely spaced Chl b molecules.  相似文献   

19.
Under strong light conditions, long-lived chlorophyll triplets (3Chls) are formed, which can sensitize singlet oxygen, a species harmful to the photosynthetic apparatus of plants. Plants have developed multiple photoprotective mechanisms to quench 3Chl and scavenge singlet oxygen in order to sustain the photosynthetic activities. The lumenal loop of light-harvesting chlorophyll a/b complex of photosystem II (LHCII) plays important roles in regulating the pigment conformation and energy dissipation. In this study, site-directed mutagenesis analysis was applied to investigate triplet–triplet energy transfer and quenching of 3Chl in LHCII. We mutated the amino acid at site 123 located in this region to Gly, Pro, Gln, Thr and Tyr, respectively, and recorded fluorescence excitation spectra, triplet-minus-singlet (TmS) spectra and kinetics of carotenoid triplet decay for wild type and all the mutants. A red-shift was evident in the TmS spectra of the mutants S123T and S123P, and all of the mutants except S123Y showed a decrease in the triplet energy transfer efficiency. We propose, on the basis of the available structural information, that these phenomena are related to the involvement, due to conformational changes in the lumenal region, of a long-wavelength lutein (Lut2) involved in quenching 3Chl.  相似文献   

20.
Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号