共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+) regulates cell differentiation and morphogenesis in a diversity of organisms and dysregulation of Ca(2+) signal transduction pathways leads to many cellular pathologies. In Dictyostelium Ca(2+) induces ecmB expression and stalk cell differentiation in vitro. Here we have analyzed the pattern of ecmB expression in intact and bisected slugs and the effect of agents that affect Ca(2+) levels or antagonize calmodulin (CaM) on this expression pattern. We have shown that Ca(2+) and CaM regulate ecmB expression and pstAB/pstB cell differentiation in vivo. Agents that increase intracellular Ca(2+) levels increased ecmB expression and/or pstAB and pstB cell differentiation, while agents that decrease intracellular Ca(2+) or antagonize CaM decreased it. In isolated slug tips agents that affect Ca(2+) levels and antagonize CaM had differential effect on ecmB expression and cell differentiation in the anterior versus posterior zones. Agents that increase intracellular Ca(2+) levels increased the number of ecmB expressing cells in the anterior region of slugs, while agents that decrease intracellular Ca(2+) levels or antagonize CaM activity increased the number of ecmB expressing cells in the posterior. We have also demonstrated that agents that affect Ca(2+) levels or antagonize CaM affect cells motility and regeneration of shape in isolated slug tips and backs and regeneration of tips in isolated slug backs. To our knowledge, this is the first study detailing the pattern of ecmB expression in regenerating slugs as well as the role of Ca(2+) and CaM in the regeneration process and ecmB expression. 相似文献
2.
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells. 相似文献
3.
We had previously shown that hydrocortisone (Hy), a glucocorticoid hormone, regulates the expression of the transformed phenotype of rat C6 glioma cells. The hormone reversibly renders C6 cells dependent on anchorage and high Ca2+ concentration for growth. We had also isolated Hy-resistant C6 variants in agarose suspension cultures. Here we report that Hy-resistant variants selected in high (1.8mM) Ca2+ medium become growth-arrested in low (30 microM) Ca2+ medium upon hormone treatment. We conclude that Hy-induced anchorage dependence and Hy-induced high Ca2+ requirement for growth of C6 glioma cells, are two independent phenotypes. 相似文献
4.
Ca2+ signaling, mitochondria and cell death 总被引:1,自引:0,他引:1
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate. 相似文献
5.
Malík R Vlasicová K Sedo A 《Physiological research / Academia Scientiarum Bohemoslovaca》2002,51(1):73-78
There are conflicting results concerning the receptor subtype(s) involved in calcium-mediated endothelin signaling in the glial cells. In order to elucidate the role of endothelin A and B receptors in these processes, we have studied the effect of a complex spectrum of endothelin receptor ligands on intracellular calcium concentration changes in proliferating and differentiated C6 rat glioma cells. Cell differentiation was induced by dibutyryl-cAMP and assessed by the glial fibrillar acidic protein content. Intracellular calcium changes were measured in cell suspensions using fluorescent probe Fura-2. The specific endothelin B receptor agonists sarafotoxin S6c and IRL-1620 did not influence the intracellular calcium concentration. However, calcium changes induced by endothelin-1 and especially by endothelin-3 after the pretreatment of cells with one of these endothelin B receptor specific agonists were significantly enhanced even above the values attained by the highest effective endothelin concentrations alone. Such endothelin B-receptor ligand-induced sensitization of calcium signaling was not observed in differentiated C6 cells. Moreover, endothelin-induced calcium oscillations in differentiated C6 cells were less inhibited by BQ-123 and BQ-788 than in their proliferating counterparts. In conclusion, the specific activation of endothelin B receptor in C6 rat glioma cells does not affect intracellular calcium per se, but probably does so through interaction with the endothelin A receptor. The pattern and/or functional parameters of endothelin receptors in C6 rat glioma cells are modified by cell differentiation. 相似文献
6.
D'Souza SJ Pajak A Balazsi K Dagnino L 《The Journal of biological chemistry》2001,276(26):23531-23538
The epidermis consists of a squamous epithelium continuously replenished by committed stem cells, which can either self-renew or differentiate. We demonstrated previously that E2F genes are differentially expressed in developing epidermis (Dagnino, L., Fry, C. J., Bartley, S. M., Farnham, P., Gallie, B. L., and Phillips, R. A. (1997) Cell Growth Differ. 8, 553-563). Thus, we hypothesized that various E2F proteins likely play distinct growth regulatory roles in the undifferentiated stem cells and in terminally differentiated keratinocytes. To further understand the function of E2F genes in epidermal morphogenesis, we have examined the expression, regulation, and protein-protein interactions of E2F factors in undifferentiated cultured murine primary keratinocytes or in cells induced to differentiate with Ca(2+) or BMP-6 (bone morphogenetic protein 6). We find similar patterns of E2F regulation with both differentiating agents and demonstrate a switch in expression from E2F-1, -2, and -3 in undifferentiated, proliferating cells to E2F-5 in terminally differentiated keratinocytes. Inhibition of keratinocyte proliferation by transforming growth factor-beta1 did not enhance E2F-5 protein levels, suggesting that this response is specific to differentiation rather than reversible cell cycle withdrawal. E2F-5 up-regulation is also accompanied by formation of heteromeric nuclear complexes containing E2F5, p130, and histone deacetylase (HDAC) 1. Overexpression of E2F5 specifically inhibited DNA synthesis in undifferentiated keratinocytes in an HDAC-dependent manner, suggesting that E2F-5.p130.HDAC1 complexes are likely involved in the permanent withdrawal from the cell cycle of keratinocytes responding to differentiation stimuli. 相似文献
7.
Schreiber R 《The Journal of membrane biology》2005,205(3):129-137
Mitogens control progression through the cell cycle in non-transformed cells by complex cascades of intracellular messengers,
such as Ca2+ and protons, and by cell volume changes. Intracellular Ca2+ and proton concentrations are critical for linking external stimuli to proliferation, motility, apoptosis and differentiation.
This review summarizes the role in cell proliferation of calcium release from intracellular stores and the Ca2+ entry through plasma membrane Ca2+ channels. In addition, the impact of intracellular pH and cell volume on cell proliferation is discussed. 相似文献
8.
Fedirko NV Kruglikov IA Kopach OV Vats JA Kostyuk PG Voitenko NV 《Biochimica et biophysica acta》2006,1762(3):294-303
Xerostomia and pathological thirst are troublesome complications of diabetes mellitus associated with impaired functioning of salivary glands; however, their cellular mechanisms are not yet determined. Isolated acinar cells were loaded with Ca2+ indicators fura-2/AM for measuring cytosolic Ca2+ concentration ([Ca2+]i) or mag-fura-2/AM-inside the endoplasmic reticulum (ER). We found a dramatic decrease in pilocarpine-stimulated saliva flow, protein content and amylase activity in rats after 6 weeks of diabetes vs. healthy animals. This was accompanied with rise in resting [Ca2+]i and increased potency of acetylcholine (ACh) and carbachol (CCh) but not norepinephrine (NE) to induce [Ca2+]i transients in acinar cells from diabetic animals. However, [Ca2+]i transients mediated by Ca2+ release from ER stores (induced by application of either ACh, CCh, NE, or ionomycin in Ca2+-free extracellular medium) were decreased under diabetes. Application of inositol-1,4,5-trisphosphate led to smaller Ca2+ release from ER under the diabetes. Both plasmalemma and ER Ca2+-ATPases activity was reduced and the latter showed the increased affinity to ATP under the diabetes. We conclude that the diabetes caused impairment of salivary cells functions that, on the cellular level, associates with Ca2+ overload, increased Ca2+-mobilizing ability of muscarinic but not adrenergic receptors, decreased Ca2+-ATPases activity and ER Ca2+ content. 相似文献
9.
Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release 下载免费PDF全文
Weisleder N Brotto M Komazaki S Pan Z Zhao X Nosek T Parness J Takeshima H Ma J 《The Journal of cell biology》2006,174(5):639-645
Reduced homeostatic capacity for intracellular Ca2+ ([Ca2+]i) movement may underlie the progression of sarcopenia and contractile dysfunction during muscle aging. We report two alterations to Ca2+ homeostasis in skeletal muscle that are associated with aging. Ca2+ sparks, which are the elemental units of Ca2+ release from sarcoplasmic reticulum, are silent under resting conditions in young muscle, yet activate in a dynamic manner upon deformation of membrane structures. The dynamic nature of Ca2+ sparks appears to be lost in aged skeletal muscle. Using repetitive voltage stimulation on isolated muscle preparations, we identify a segregated [Ca2+]i reserve that uncouples from the normal excitation-contraction process in aged skeletal muscle. Similar phenotypes are observed in adolescent muscle null for a synaptophysin-family protein named mitsugumin-29 (MG29) that is involved in maintenance of muscle membrane ultrastructure and Ca2+ signaling. This finding, coupled with decreased expression of MG29 in aged skeletal muscle, suggests that MG29 expression is important in maintaining skeletal muscle Ca2+ homeostasis during aging. 相似文献
10.
Endothelialization repairs the lining of damaged vasculature and is a key process in preventing thrombosis and restenosis. It has been demonstrated that extracellular calcium ([Ca2+](o)) influx is important for subsequent endothelialization. The role of intracellular Ca2+ stores in mechanical denudation induced intracellular calcium ([Ca2+](i)) rise and endothelialization remains to be demonstrated. Using monolayer culture of a human endothelial cell line (human umbilical vein endothelial cell, HUVEC), we investigated [Ca2+](i) wave propagation and re-endothelialization following mechanical denudation. Consistent with previous reports for other types of cells, mechanical denudation induces calcium influx, which is essential for [Ca2+](i) rise and endothelialization. Moreover, we found that intracellular Ca(2+) stores are also essential for denudation induced [Ca2+](i) wave initiation and propagation, and the subsequent endothelialization. Thapsigargin which depletes intracellular Ca2+ stores completely abolished [Ca2+](i) wave generation and endothelialization. Xestospongin C (XeC), which prevents Ca2+ release from intracellular Ca2+ stores by inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptor, inhibited intercellular Ca2+ wave generation and endothelialization following denudation. Purinergic signaling through a suramin sensitive mechanism and gap junction communication also contribute to in intercellular Ca(2+) wave propagation and re-endothelialization. We conclude that intracellular Ca2+ stores, in addition to extracellular Ca2+, are essential for intracellular Ca2+ signaling and subsequent endothelialization following mechanical denudation. 相似文献
11.
The purpose of this study is to understand the interaction of Na + -Ca2+ exchanger (NCX1), that is one of the essential regulators of Ca2+ homeostasis, with caveolin (Cav)-1 and Cav-2 in Cav-3 null cell (rat C6 glioma cell). Both mRNA and protein expression of NCX1, Cav-1 and Cav-2 was observed, but no expression of mRNA and protein of Cav-3 were observed in C6 glioma cells. In isolated caveolae-enriched membrane fraction, the NCX1, Cav-1 and Cav-2 proteins localized in same fractions. The experiment of immuno-precipitation showed complex formation between the NCX1 and Cavs. Confocal microscopy also supported co-localization of NCX1and Cavs at the plasma membrane. Functionally, sodium-free induced forward mode of NCX1 attenuated by Cav-1 antisense ODN. When treated cells with Cav-2 antisense ODN, both reverse and forward mode of NCX1 was attenuated. From these results, in the Cav-3 lacking cells, the function of NCX1 might be regulated by binding with Cavs. Considering the decrement of NCX1 activity by antisense ODNs, caveolins may play an important role in diverse of pathophysiological process of NCX1-related disorders in the body. 相似文献
12.
Oishi T Konoki K Tamate R Torikai K Hasegawa F Matsumori N Murata M 《Bioorganic & medicinal chemistry letters》2012,22(11):3619-3622
Maitotoxin (MTX) is a ladder-shaped polyether produced by the epiphytic dinoflagellate Gambierdiscus toxicus. It is known to elicit potent toxicity against mammals and induce influx of Ca(2+) into cells. An artificial ladder-shaped polyether possessing a 6/7/6/6/7/6/6 heptacyclic ring system, which was designed for elucidating interactions with transmembrane proteins, was found to be the most potent inhibitor against MTX-induced Ca(2+) influx that has ever been reported. 相似文献
13.
Aung CS Kruger WA Poronnik P Roberts-Thomson SJ Monteith GR 《Biochemical and biophysical research communications》2007,355(4):932-936
The differentiation of colon cancer cell lines is associated with changes in calcium homeostasis. Concomitantly there are changes in the expression of some calcium transporters and G-protein-coupled receptors, which are capable of altering cytosolic-free calcium levels. Recent studies associate alterations in calcium transporter expression with tumourigenesis, such as changes in specific isoforms of the plasma membrane calcium ATPase (PMCA) in breast cancer cell lines. In this study, we examined the expression of PMCA isoforms in the HT-29 colon cancer cell line using two methods of differentiation (sodium butyrate-mediated and spontaneous post-confluency induced differentiation). Our studies show that differentiation of HT-29 colon cancer cells is associated with the up-regulation of the PMCA isoform PMCA4 but no significant alteration in PMCA1. These results suggest that PMCA4 may be important and have a specific role in colon cells as well as being significant in colon cancer tumourigenesis. 相似文献
14.
The intracellular Ca2+ content of nontransformed Balb/c3T3 cells is two to three times higher than that of a spontaneously transformed derivative. Depriving either cell type of extracellular Mg2+ causes a 2- to 3-fold increase in their Ca2+ content over a 24-hr period. Restoring Mg2+ to the medium decreases the Ca2+ content of the cells to their original values in about the same time. The increase in Ca2+ content is not blocked by cycloheximide suggesting that normal rates of protein synthesis are not required to produce this effect. Mg2+ deprivation also decreases the initial rate of Ca2+ efflux from the transformed cells and increases the size of the slowly exchanging fraction of Ca2+ to the levels found in the nontransformed cells. Since Mg2+ deprivation normalizes the appearance and growth behavior of the transformed cells, the possible intermediary role of Ca2+ in this normalization was studied. Large changes in extracellular Ca2+ produced large changes in the Ca2+ content of the transformed cells with little change in appearance or thymidine incorporation rate. Ca2+ deprivation did inhibit thymidine incorporation in early passage nontransformed cells; however with repeated passage, this effect decreased, as did the Ca2+ content of these cells. The possible role of Mg2+ in regulating cellular Ca2+ content and distribution is discussed, as is the relation of Ca2+ content and distribution to the development of the transformed state. 相似文献
15.
Exposure of C6 glioma cells to endothelin-1 (ET-1) caused dose-dependent (10(-11) M to 10(-7) M) increments in intracellular calcium concentration ([Ca2+]i) and c-fos mRNA expression (4.5-fold) that were abolished by the endothelinA receptor antagonist, BQ610, and by inhibition of phospholipase C with U73122. ET-1 stimulated c-fos mRNA expression was also inhibited by protein kinase C inhibition (chelerythrine) and by the MAP kinase kinase inhibitor PD98059, but not by inhibitors of tyrosine kinases, protein kinase A type I or II, calmodulin kinase II, or calcium channel blockade. C6 cells treated with ET-1 demonstrated a significant increase in MAP kinase activity as evidenced by Western blotting. These results indicate a mechanism of long-term signaling by ET-1 involving an ET(A) receptor-mediated, phospholipase C(beta)-linked pathway that is dependent on protein kinase C and MAP kinase activation. 相似文献
16.
Alterations of glial tumor cell Ca2+ metabolism and Ca2+-dependent cAMP accumulation by phorbol myristate acetate 总被引:2,自引:0,他引:2
M A Brostrom C O Brostrom L A Brotman C Lee D J Wolff H M Geller 《The Journal of biological chemistry》1982,257(12):6758-6765
C6 glial tumor cells exposed to phorbol myristate acetate (PMA) possessed lowered cAMP content, reduced ability to accumulate cAMP in response to norepinephrine or cholera toxin, and a 3-fold increase in the concentration of norepinephrine producing 50% of the maximal rate of cAMP accumulation. Detectable effects on cAMP accumulation occurred within 10 min of exposure to PMA, and prominent effects by 2 h. PMA similarly affected cells pretreated with cycloheximide. In contrast, Ca2+-depleted preparations of control and PMA-treated cells accumulated cAMP identically in response to norepinephrine or cholera toxin. Ca2+ restoration, which increased the rate of cAMP accumulation in control cells severalfold, did not enhance cAMP accumulation in PMA-treated cells. Neither high catecholamine nor high extracellular Ca2+ concentrations reversed the suppression of cAMP accumulation by PMA. Trifluoperazine, which inhibited the Ca2+-dependent component of norepinephrine-stimulated cAMP accumulation in control cells, did not significantly reduce norepinephrine-stimulated cAMP accumulation in PMA-treated cells. Cell free preparations of control and PMA-treated cultures did not differ significantly in calmodulin content or in Ca2+-stimulated adenylate cyclase, Ca2+-dependent cAMP phosphodiesterase, and (Ca2+-Mg2+)-ATPase activities. The Ca2+ content, however, of intact cells decreased with time of PMA treatment. Within minutes after exposure to PMA, the ability of Ca2+-depleted cells to take up 45Ca was significantly reduced. Both 45Ca uptake and Ca2+-dependent cAMP accumulation were reduced over the same PMA concentration range. 相似文献
17.
Fagan KA Rich TC Tolman S Schaack J Karpen JW Cooper DM 《The Journal of biological chemistry》1999,274(18):12445-12453
Previous studies have established that Ca2+-sensitive adenylyl cyclases, whether endogenously or heterologously expressed, are preferentially regulated by capacitative Ca2+ entry, compared with other means of elevating cytosolic Ca2+ (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K. A., Mahey, R., and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). These findings led to the suggestion that adenylyl cyclases and capacitative Ca2+ entry channels were localized in the same functional domain of the plasma membrane. In the present study, we have asked whether a heterologously expressed Ca2+-permeable channel could regulate the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells. The cDNA coding for the rat olfactory cyclic nucleotide-gated channel was inserted into an adenovirus construct to achieve high levels of expression. Electrophysiological measurements confirmed the preservation of the properties of the expressed olfactory channel. Stimulation of the channel with cGMP analogs yielded a robust elevation in cytosolic Ca2+, which was associated with an inhibition of cAMP accumulation, comparable with that elicited by capacitative Ca2+ entry. These findings not only extend the means whereby Ca2+-sensitive adenylyl cyclases may be regulated, they also suggest that in tissues where they co-exist, cyclic nucleotide-gated channels and Ca2+-sensitive adenylyl cyclases may reciprocally modulate each other's activity. 相似文献
18.
Shumilina E Huber SM Lang F 《American journal of physiology. Cell physiology》2011,300(6):C1205-C1214
Dendritic cells (DCs) are highly versatile antigen-presenting cells critically involved in both innate and adaptive immunity as well as maintenance of self-tolerance. DC function is governed by Ca(2+) signaling, which directs the DC responses to diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins. Ca(2+)-sensitive DC functions include DC activation, maturation, migration, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca(2+) trigger immune suppression or switch off DC activity. Ca(2+) signals are generated by the orchestration of Ca(2+) transport processes across plasma, endoplasmic reticulum, and inner mitochondrial membrane. These processes include active pumping of Ca(2+), Ca(2+)/Na(+) antiport, and electrodiffusion through Ca(2+)-permeable channels or uniporters. Ca(2+) channels in the plasma membrane such as Ca(2+) release-activated Ca(2+) or L-type Ca(2+) channels are tightly regulated by the membrane potential which in turn depends on the activity of voltage-gated K(+) or Ca(2+)-activated nonselective cation channels. The rapidly growing knowledge on the function and regulation of these membrane transport proteins provides novel insight into pathophysiological mechanisms underlying dysfunction of the immune system and opens novel therapeutic opportunity to favorably influence the function of the immune system. 相似文献
19.
The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+ homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+ pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+ transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease. Saccharomyces cerevisiae; calcium ion; transporters; functional complementation 相似文献
20.
Rabindranath Chakrabarti Joseph Y. Chang Kent L. Erickson 《Journal of cellular biochemistry》1995,58(3):344-359
In this study, we showed that cross-linking CD3 molecules on the T cell surface resulted in Ca2+ release from the intracellular stores followed by a sustained Ca2+ influx. Inhibition of release with TMB-8 did not block the influx. However, inhibition of phospholipase C activity suppressed both Ca2+ release and influx. Once activated, the influx pathway remained open in the absence of further hydrolysis of PIP2. Thapsigargin, a microsomal Ca2+ -ATPase inhibitor, stimulated Ca2+ entry into the cells by a mechanism other than emptying Ca2+ stores. In addition, Ca2+ entry into the Ca2+ -depleted cells was stimulated by low basal level of cytosolic Ca2+, not by the emptying of intracellular Ca2+ stores. Both the Ca2+ release and influx were dependent on high and low concentrations of extracellular Ca2+. At low concentrations, Mn2+ entered the cell through the Ca2+ influx pathway and quenched the sustained phase of fluorescence; whereas, at higher Mn2+ concentration both the transient and the sustained phases of fluorescence were quenched. Moreover, Ca2+ release was inhibited by low concentrations of Ni2+, La3+, and EGTA, while Ca2+ influx was inhibited by high concentrations. Thus, in T cells Ca2+ influx occurs independently of IP3-dependent Ca2+ release. However, some other PIP2 hydrolysis-dependent event was involved in prolonged activation of Ca2+ influx. Extracellular Ca2+ influenced Ca2+ release and influx through the action of two plasma membrane Ca2+ entry pathways with different pharmacological and biochemical properties. 相似文献