首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously proposed that acidification-induced regulation of the cardiac gap junction protein connexin43 (Cx43) may be modeled as a particle-receptor interaction between two separate domains of Cx43: the carboxyl terminal (acting as a particle), and a region including histidine 95 (acting as a receptor). Accordingly, intracellular acidification would lead to particle-receptor binding, thus closing the channel. A premise of the model is that the particle can bind its receptor, even if the particle is not covalently bound to the rest of the protein. The latter hypothesis was tested in antisense-injected Xenopus oocyte pairs coexpressing mRNA for a pH-insensitive Cx43 mutant truncated at amino acid 257 (i.e., M257) and mRNA coding for the carboxyl terminal region (residues 259-382). Intracellular pH (pHo) was recorded using the dextran form of the proton-sensitive dye seminaphthorhodafluor (SNARF). Junctional conductance (Gj) was measured with the dual voltage clamp technique. Wild-type Cx43 channels showed their characteristic pH sensitivity. M257 channels were not pH sensitive (pHo tested: 7.2 to 6.4). However, pH sensitivity was restored when the pH-insensitive channel (M257) was coexpressed with mRNA coding for the carboxyl terminal. Furthermore, coexpression of the carboxyl terminal of Cx43 enhanced the pH sensitivity of an otherwise less pH-sensitive connexin (Cx32). These data are consistent with a model of intramolecular interactions in which the carboxyl terminal acts as an independent domain that, under the appropriate conditions, binds to a separate region of the protein and closes the channel. These interactions may be direct (as in the ball-and-chain mechanism of voltage-dependent gating of potassium channels) or mediated through an intermediary molecule. The data further suggest that the region of Cx43 that acts as a receptor for the particle is conserved among connexins. A similar molecular mechanism may mediate chemical regulation of other channel proteins.  相似文献   

2.
The regulation of junctional conductance (Gi) of the major cardiac (connexin43; Cx43) and liver (connexin32; Cx32) gap junction proteins by intracellular hydrogen ion concentration (pH; pHi), as well as well as that of a truncation mutant of Cx43 (M257) with 125 amino acids deleted from the COOH terminus, was characterized in pairs of Xenopus laevis oocytes expressing homologous channels. Oocytes were injected with 40 nl mRNAs (2 micrograms/microliters) encoding the respective proteins; subsequently, cells were stripped, paired, and incubated for 20-24 h. Gj was measured in oocyte pairs using the dual electrode voltage-clamp technique, while pHi was recorded simultaneously in the unstimulated cell by means of a proton-selective microelectrode. Because initial experiments showed that the pH-sensitive microelectrode responded more appropriately to acetate than to CO2 acidification, oocytes expressing Cx32 and wild type and mutant Cx43 were exposed to a sodium acetate saline, which was balanced to various levels of pH using NaOH and HCl. pH was changed in a stepwise manner, and quasi-steady-state Gj -pHi relationships were constructed from data collected at each step after both Gj and pHi had reached their respective asymptotic values. A moderate but significant increase of Gj was observed in Cx43 pairs as pHi decreased from 7.2 to 6.8. In both Cx32 and M257 pairs, Gj increased significantly over a wider pH range (i.e., between 7.2 and 6.3). Further acidification reversibly reduced Gj to zero in all oocyte pairs. Pooled data for the individual connexins obtained during uncoupling were fitted by the Hill equation; apparent 50%-maximum (pK;pKa) values were 6.6 and 6.1 for Cx43 and Cx32, respectively, and Hill coefficients were 4.2 for Cx43 and 6.2 for Cx32. Like Cx32, M257 had a more acidic pKa (6.1) and steeper Hill coefficient (6.0) than wild type Cx43. The pKa and Hill coefficient of M257 were very similar to those of Cx32. These experiments provide the first direct comparison of the effects of acidification on Gj in oocyte pairs expressing Cx43 or Cx32. The results indicate that structural differences in the connexins are the basis for their unequal sensitivity to intracellular acidification in vivo. The data further suggest that a common pH gating mechanism may exist between amino acid residues 1 and 256 in both Cx32 and Cx43. However, the longer carboxyl tail of Cx43 relative to Cx32 or M257 provides additional means to facilitate acidification-induced gating; its presence shifts the pKa from 6.1 (Cx32 and M257) to 6.6 (Cx43) in the conductance of these channels.  相似文献   

3.
Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119–144; referred to as “L2”). Structural analysis of L2 shows two α-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43.  相似文献   

4.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was approximately 220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of approximately 75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

5.
Immunohistochemical co-localization of distinct connexins (Cxs) in junctional areas suggests the formation of heteromultimeric channels. To determine the docking effects of the heterotypic combination of Cx43 and Cx45 on the voltage-gating properties of their channels, we transfected DNA encoding Cx43 or Cx45 into N2A neuroblastoma or HeLa cells. Using a double whole-cell voltage-clamp technique, we determined macroscopic and single-channel gating properties of the intercellular channels formed. Cx43-Cx45 heterotypic channels had rectifying properties where Cx45 connexons inactivated rapidly upon hyperpolarizing voltage pulses applied to the Cx45-expressing cell. During depolarizing pulses to the Cx45-expressing cell, Cx43 connexons inactivated with substantially reduced kinetics as compared with homotypic Cx43 channels. Similar slow kinetics was observed for homotypic Cx43M257 (truncation mutant). Heterotypic channels had a main conductance whose value was predicted by the sum of corresponding homomeric connexon conductances; it was not voltage dependent and had no detectable residual conductance. The voltage-gating kinetics of heterotypic channels and their single-channel behavior implicate a role for the Cx43 carboxyl-terminal domain in the fast gating mechanism and in the establishment of residual conductance. Our results also suggest that heterotypic docking may lead to conformational changes that inhibit this action of the Cx43 carboxyl-terminal domain.  相似文献   

6.
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end.  相似文献   

7.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was ~220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of ~75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

8.
Gap junctions are intercellular channels formed by the serial, head to head arrangement of two hemichannels. Each hemichannel is an oligomer of six protein subunits, which in vertebrates are encoded by the connexin gene family. All intercellular channels formed by connexins are sensitive to the relative difference in the membrane potential between coupled cells, the transjunctional voltage (Vj), and gate by the separate action of their component hemichannels (Harris, A.L., D.C. Spray, and M.V. Bennett. 1981. J. Gen. Physiol. 77:95-117). We reported previously that the polarity of Vj dependence is opposite for hemichannels formed by two closely related connexins, Cx32 and Cx26, when they are paired to form intercellular channels (Verselis, V.K., C.S. Ginter, and T.A. Bargiello. 1994. Nature. 368:348-351). The opposite gating polarity is due to a difference in the charge of the second amino acid. Negative charge substitutions of the neutral asparagine residue present in wild-type Cx32 (Cx32N2E or Cx32N2D) reverse the gating polarity of Cx32 hemichannels from closure at negative Vj to closure at positive Vj. In this paper, we further examine the mechanism of polarity reversal by determining the gating polarity of a chimeric connexin, in which the first extracellular loop (E1) of Cx32 is replaced with that of Cx43 (Cx43E1). The resulting chimera, Cx32*Cx43E1, forms conductive hemichannels when expressed in single Xenopus oocytes and intercellular channels in pairs of oocytes (Pfahnl, A., X.W. Zhou, R. Werner, and G. Dahl. 1997. Pflügers Arch. 433:733-779). We demonstrate that the polarity of Vj dependence of Cx32*Cx43E1 hemichannels in intercellular pairings is the same as that of wild-type Cx32 hemichannels and is reversed by the N2E substitution. In records of single intercellular channels, Vj dependence is characterized by gating transitions between fully open and subconductance levels. Comparable transitions are observed in Cx32*Cx43E1 conductive hemichannels at negative membrane potentials and the polarity of these transitions is reversed by the N2E substitution. We conclude that the mechanism of Vj dependence of intercellular channels is conserved in conductive hemichannels and term the process Vj gating. Heteromeric conductive hemichannels comprised of Cx32*Cx43E1 and Cx32N2E*Cx43E1 subunits display bipolar Vj gating, closing to substates at both positive and negative membrane potentials. The number of bipolar hemichannels observed in cells expressing mixtures of the two connexin subunits coincides with the number of hemichannels that are expected to contain a single oppositely charged subunit. We conclude that the movement of the voltage sensor in a single connexin subunit is sufficient to initiate Vj gating. We further suggest that Vj gating results from conformational changes in individual connexin subunits rather than by a concerted change in the conformation of all six subunits.  相似文献   

9.
We identified and cloned a novel gene encoding a partner protein, CIP150, of connexin 43 (Cx43). CIP150 associates with Cx43 through its carboxyl terminal domain. Conversely, a region consisting of 16 amino acids in the juxtamembrane region (amino acids 227-242) in the carboxyl terminal tail of Cx43 was identified to be responsible for the association. A variant of Cx43 lacking this region was expressed only in a nonphosphorylated form and appeared to lose the capacity to localize to the region of cell-cell contact and dye transfer activity. When the expression of CIP150 was suppressed using small interfering RNA, the localization to the plasma membrane as well as dye transfer activity of Cx43 was significantly reduced. These results suggest that the newly identified domain is essential for the proper phosphorylation and localization of Cx43, and CIP150 is a novel partner protein targeting this domain.  相似文献   

10.
Previous studies have demonstrated that the carboxyl terminus of the gap junction protein Cx43 (Cx43CT) can act as an independent, regulatory domain that modulates intercellular communication in response to appropriate chemical stimuli. Here, we have used NMR, chemical cross-linking, and analytical ultracentrifugation to further characterize the biochemical and biophysical properties of the Connexin43 carboxyl terminal domain (S255-I382). NMR-diffusion experiments at pH 5.8 suggested that the Connexin43 carboxyl terminus (CX43CT) may have a molecular weight greater than that of a monomer. Sedimentation equilibrium and cross-linking data demonstrated a predominantly dimeric state for the Cx43CT at pH 5.8 and 6.5, with limited dimer formation at a more neutral pH. NMR-filtered nuclear Overhauser effect studies confirmed these observations and identified specific areas of parallel orientation within Cx43CT, likely corresponding to dimerization domains. These regions included a portion of the SH3 binding domain, as well as two fragments previously found to organize in alpha-helical structures. Together, these data show that acidification causes Cx43CT dimer formation in vitro. Whether dimer formation is an important structural component of the regulation of Connexin43 channels remains to be determined. Dimerization may alter the affinity of Cx43CT regions for specific molecular partners, thus modifying the regulation of gap junction channels.  相似文献   

11.
Surface plasmon resonance (SPR) allows examination of protein-protein interactions in real time, from which both binding affinities and kinetics can be directly determined. We have used the SPR technique to search for proteins in heart tissue that would be candidate binding partners for the cardiac gap junction protein, connexin43 (Cx43). Heart lysate showed a strong, pH-dependent binding to the carboxyl terminus (CT) of Cx43 (amino acids 254-382) covalently linked to an SPR cuvette. Binding was inhibited by the presence of v-src transfected 3T3 cell lysate, suggesting that binding partners in these two lysates may compete for overlapping epitopes on Cx43CT. The combined application of proteomic and functional studies is expected to identify which proteins within heart tissue interact with Cx43 and what roles they may play in gap junction function.  相似文献   

12.
Surface plasmon resonance (SPR) allows examination of protein-protein interactions in real time, from which both binding affinities and kinetics can be directly determined. We have used the SPR technique to search for proteins in heart tissue that would be candidate binding partners for the cardiac gap junction protein, connexin43 (Cx43). Heart lysate showed a strong, pH-dependent binding to the carboxyl terminus (CT) of Cx43 (amino acids 254-382) covalently linked to an SPR cuvette. Binding was inhibited by the presence of v-src transfected 3T3 cell lysate, suggesting that binding partners in these two lysates may compete for overlapping epitopes on Cx43CT. The combined application of proteomic and functional studies is expected to identify which proteins within heart tissue interact with Cx43 and what roles they may play in gap junction function.  相似文献   

13.
Connexin hemichannels display two distinct forms of voltage-dependent gating, corresponding to the operation of Vj- or fast gates and loop- or slow gates. The carboxyl terminus (CT) of connexin 32 has been reported to be required for the operation of the Vj (fast) gates, but this conclusion was inferred from the loss of a fast kinetic component in macroscopic currents of CT-truncated intercellular channels elicited by transjunctional voltage. Such inferences are complicated by presence of both fast and slow gates in each hemichannel and the serial head-to-head arrangement of these gates in the intercellular channel. Examination of voltage gating in undocked hemichannels and Vj gate polarity reversal by a negative charge substitution (N2E) in the amino terminal domain allow unequivocal separation of the two gating processes in a Cx32 chimera (Cx3243E1). This chimera expresses currents as an undocked hemichannel in Xenopus oocytes and provides a model system to study the molecular determinants and mechanisms of Cx32 voltage gating. Here, we demonstrate that both Vj- and loop gates are operational in a truncation mutation that removes all but the first four CT residues (ACAR219) of the Cx3243E1 hemichannel. We conclude that an operational Cx32 Vj (fast) gate does not require CT residues 220–283, as reported previously by others.  相似文献   

14.
Connexin hemichannels display two distinct forms of voltage-dependent gating, corresponding to the operation of Vj- or fast gates and loop- or slow gates. The carboxyl terminus (CT) of connexin 32 has been reported to be required for the operation of the Vj (fast) gates, but this conclusion was inferred from the loss of a fast kinetic component in macroscopic currents of CT-truncated intercellular channels elicited by transjunctional voltage. Such inferences are complicated by presence of both fast and slow gates in each hemichannel and the serial head-to-head arrangement of these gates in the intercellular channel. Examination of voltage gating in undocked hemichannels and Vj gate polarity reversal by a negative charge substitution (N2E) in the amino terminal domain allow unequivocal separation of the two gating processes in a Cx32 chimera (Cx3243E1). This chimera expresses currents as an undocked hemichannel in Xenopus oocytes and provides a model system to study the molecular determinants and mechanisms of Cx32 voltage gating. Here, we demonstrate that both Vj- and loop gates are operational in a truncation mutation that removes all but the first four CT residues (ACAR219) of the Cx3243E1 hemichannel. We conclude that an operational Cx32 Vj (fast) gate does not require CT residues 220–283, as reported previously by others.  相似文献   

15.
Surface plasmon resonance (SPR) allows examination of protein-protein interactions in real time, from which both binding affinities and kinetics can be directly determined. We have used the SPR technique to search for proteins in heart tissue that would be candidate binding partners for the cardiac gap junction protein, connexin43 (Cx43). Heart lysate showed a strong, pH-dependent binding to the carboxyl terminus (CT) of Cx43 (amino acids 254-382) covalently linked to an SPR cuvette. Binding was inhibited by the presence of v-src transfected 3T3 cell lysate, suggesting that binding partners in these two lysates may compete for overlapping epitopes on Cx43CT. The combined application of proteomic and functional studies is expected to identify which proteins within heart tissue interact with Cx43 and what roles they may play in gap junction function.  相似文献   

16.
Carboxyl-terminal deletion mutants of the gap junction protein connexin32 were tested in the oocyte cell-cell channel assay. Oocytes expressing a mutant lacking 58 carboxyl terminal amino acids were found to exhibit junctional conductances of the same magnitude as oocytes expressing wild-type connexin32. The gating properties of the channels formed by this mutant of connexin32 with respect to transjunctional voltage and cytoplasmic acidification are indistinguishable from those found with wild-type connexin32 channels. This includes a novel pH-dependent voltage gate. In another mutant, two carboxyl terminal serine residues, Ser233 and Ser240, were replaced by Asn residues. This double mutant has properties indistinguishable from wild-type connexin32, suggesting that phosphorylation of either of these serines is not required for channel opening.  相似文献   

17.
Connexin37 (Cx37) forms gap junction channels between endothelial cells, and two polymorphic Cx37 variants (Cx37-S319 and Cx37-P319) have been identified with a possible link to atherosclerosis. We studied the gap junction channel properties of these hCx37 polymorphs by expression in stably transfected communication-deficient cells (N2A and RIN). We also expressed a third, truncated variant (Cx37-fs254Delta293) and Cx37 constructs containing epitope tags added to their amino or carboxyl termini. All Cx37 constructs were produced by the transfected cells as demonstrated by RT-PCR and immunoblotting and trafficked to appositional surfaces between cells as demonstrated by immunofluorescence microscopy. Dual whole cell patch-clamping studies demonstrated that Cx37-P319, Cx37-S319, and Cx37-fs254Delta293 had large unitary conductances ( approximately 300 pS). However, addition of an amino terminal T7 tag (T7-Cx37-fs254Delta293) produced a single channel conductance of 120-145 pS with a 24-30 pS residual state. Moreover, the kinetics of the voltage-dependent decline in junctional current for T7-Cx37-fs254Delta293 were significantly slower than for the wild type, implying a destabilization of the transition state. These data suggest that the amino terminus of Cx37 plays a significant role in gating as well as conductance. The carboxyl terminal tail has lesser influence on unitary conductance and inactivation kinetics.  相似文献   

18.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

19.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

20.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号