首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

2.
The influence of dopamine as compared with dobutamine on glucose homeostasis has been assessed in thyroidectomized euthyroid rats. Both sympathomimetic agents were given intravenously over 6 h at four dosages, varying from 2 to 30 micrograms.kg-1.min-1. Immediately before the end of the infusion period, serum concentrations of glucose and insulin as well as plasma glucagon concentrations were measured. Dobutamine infusions did not exert any influence on these parameters. At a dose of 7.5 micrograms.kg-1.min-1, dopamine infusion caused a decrease in glucose concentrations, accompanied by a rise of glucagon and insulin levels. Glucose levels were significantly increased in the presence of unaltered insulin and decreasing glucagon levels at higher dopamine doses. The rise in glucose levels was reversed by 8 micrograms.kg-1.min-1 and inverted to a decrease by 12 micrograms.kg-1.min-1 of the alpha-adrenergic blocking agent phentolamine, simultaneously infused with 15 micrograms.kg-1.min-1 dopamine, while the insulin levels were increased and glucagon levels remained elevated. These findings demonstrate that dopamine acts on glucoregulation divergently, according to the dosage applied. The data suggest that dopamine rather than dobutamine treatment may disturb glucose homeostasis.  相似文献   

3.
Glucagon dysregulation is an essential component in the pathophysiology of type 2 diabetes. Studies in vitro and in animal models have shown that zinc co-secreted with insulin suppresses glucagon secretion. Zinc supplementation improves blood glucose control in patients with type 2 diabetes, although there is little information about how zinc supplementation may affect glucagon secretion. The objective of this study was to evaluate the effect of 1-year zinc supplementation on fasting plasma glucagon concentration and in response to intravenous glucose and insulin infusion in patients with type 2 diabetes. A cross-sectional study was performed after 1-year of intervention with 30 mg/day zinc supplementation or a placebo on 28 patients with type 2 diabetes. Demographic, anthropometric, and biochemical parameters were determined. Fasting plasma glucagon and in response to intravenous glucose and insulin infusion were evaluated. Patients of both placebo and supplemented groups presented a well control of diabetes, with mean values of fasting blood glucose and glycated hemoglobin within the therapeutic goals established by ADA. No significant differences were observed in plasma glucagon concentration, glucagon/glucose ratio or glucagon/insulin ratio fasting, after glucose or after insulin infusions between placebo and supplemented groups. No significant effects of glucose or insulin infusions were observed on plasma glucagon concentration. One-year zinc supplementation did not affect fasting plasma glucagon nor response to intravenous glucose or insulin infusion in well-controlled type 2 diabetes patients with an adequate zinc status.  相似文献   

4.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have studied the effects of pancreastatin on insulin and glucagon secretions in vivo in the conscious rat. Rats were prepared with a gastric fistula and with both external jugular veins cannulated. We found that an i.v. infusion of pancreastatin (1 and 10 nmol/kg/h) inhibited the plasma insulin response and increased the plasma glucose response to the intragastric infusion of glucose in a dose-dependent manner. Furthermore, the infusion of pancreastatin increased the plasma glucagon response to the i.v. infusion of arginine in a dose-dependent manner, and it inhibited the plasma insulin response. However, such an infusion of pancreastatin had no effect on the basal plasma glucose level, nor did it have any effect on plasma insulin and glucagon concentrations. Thus, it is suggested that in the rat, the newly discovered pancreastatin is a regulator of islet cell function.  相似文献   

6.
Exenatide (exendin-4) is an incretin mimetic with potential antidiabetic activity. This study examined the effects of a continuous subcutaneous (SC) infusion of exenatide (0.2, 0.4, 0.6, or 0.8 microg/kg/day) or placebo (PBO) on glycemic control over 23 h intervals. Twelve subjects with type 2 diabetes treated with metformin and/or diet received 10 infusions (4 exenatide, 6 PBO) on consecutive days. Exenatide was given in a dose-increasing design with at least one placebo infusion between each exenatide infusion, and with meals and a snack provided during the first 14 h of infusion. Plasma exenatide concentrations were dose-proportional. Plasma glucose (4-23 h) was lower in all exenatide arms compared to placebo (p<0.0001). The change in insulin/glucagon ratio and amylin concentrations from pre-infusion to post-infusion was increased (p<0.005, p<0.05, respectively) in the combined exenatide arms, but remained unchanged in the placebo groups. Nausea and vomiting were the most common treatment emergent adverse events. Exenatide infusion also appeared to have positive effects on beta-cell and alpha-cell function as measured by proinsulin/insulin ratios and mean glucagon concentrations. In summary, exenatide lowered plasma glucose during both prandial and fasting states when delivered as a continuous SC infusion over twenty-three hours, suggesting that exenatide can provide day-long glycemic control in patients with type 2 diabetes.  相似文献   

7.
The effect of somatostatin (SRIF) on glucagon and insulin secretion was examined in fed and fasted sheep. This was related to changes in glucose production. Infusion of SRIF at 80 micrograms/h caused a marked reduction in plasma glucagon concentrations. However, the insulin response to SRIF infusion was not consistent; its concentrations decreased occasionally, but often did not change. The depression of glucagon was not associated with a significant reduction in blood glucose concentrations in either fed or fasted sheep, but was associated with a reduction in glucose production by 12--15%. The inhibitory effect of insulin on glucose production was not markedly increased by glucagon deficiency. Infusion of insulin at 1.17 U/h with SRIF decreased glucose production only an additional 10%. Thus, it appears that under basal conditions pancreatic hormonal influences on hepatic glucose production were relatively small in sheep. This implies that under normal conditions in sheep, substrate supply has a much greater impact on hepatic glucogenesis than do hormones.  相似文献   

8.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

9.
AIMS: Amylin is a second beta-cell hormone that is normally co-secreted with insulin in response to meals; it complements the effects of insulin in postprandial glucose control, in part by suppressing glucagon secretion. In patients with type 2 diabetes, mealtime administration of the human amylin analog pramlintide markedly improves postprandial glucose excursions. The aim of this study was to examine whether pramlintide reduces the postprandial hyperglucagonemia that is often seen in this patient population. METHODS: Utilizing a single-blind, placebo-controlled crossover design, 24 patients with type 2 diabetes, 12 insulin-treated and 12 non-insulin-treated, underwent a standardized mixed meal test on 2 occasions during which they received, in randomized order, a five-hour intravenous infusion of placebo or pramlintide (100 microg/h). RESULTS: During the placebo infusion, plasma glucose and plasma glucagon concentrations increased substantially after the meal. During the pramlintide infusion, postprandial plasma glucose and plasma glucagon responses were significantly (p < 0.05, all) reduced following ingestion of the same meal, both in the insulin-treated and non-insulin-treated subgroups. CONCLUSION: Supplementation of mealtime amylin with pramlintide reduces postprandial hyperglucagonemia in patients with type 2 diabetes, a mechanism that likely contributes to pramlintide's postprandial glucose-lowering effect.  相似文献   

10.
The effects of synthetic linear somatostatin on basal circulating levels on several pituitary and pancreatic hormones, and of glucose and free fatty acids (FFA) were studied in 6 normal men after an overnight fast. A priming intravenous infusion of 250 mug of somatostatin in 18 sec was followed by a constant infusion of 500 mug over a period of 60 min. A decrease in plasma values of GH, prolactin, TSH, insulin and glucagon and in blood glucose was observed during somatostatin infusion, while FFA levels increased progressively. Plasma IRI and blood glucose increased rapidly when the somatostatin infusion was stopped, while FFA decreased progressively; GH, prolactin, TSH and glucagon remained low as compared to basal levels for one hour after the end of the infusion, i.e. until the end of the experiment. A slight but significant increase of LH and ACTH was observed after the end of the infusion.  相似文献   

11.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The concentration of plasma glucose in insulin deprived pancreatectomized dogs was decreased from the basal 385 +/- 44 to 65 +/- 12 mg/dL by the infusion of 7 mU X kg-1 X min-1 insulin. During the infusion, the plasma concentration of immunoreactive glucagon (IRG) did not change and hepatic glucose production was decreased. This is in contrast to earlier findings in alloxan diabetic dogs in which plasma IRG decreased in hypoglycaemia. The hypothesis is put forward that, in contrast to pancreatic alpha cells in which the effect of insulin prevails, neither insulin nor a decrease in the ambient concentration of glucose exerts any effect on the secretion of glucagon from extrapancreatic alpha cells.  相似文献   

13.
In order to elucidate the effect of glucagon antiserum on the endocrine pancreas, the release of somatostatin, glucagon, and insulin from the isolated perfused rat pancreas was studied following the infusion of arginine both with and without pretreatment by glucagon antiserum. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated both somatostatin and glucagon secretion. However, the responses of somatostatin and glucagon were different at different doses of arginine. The infusion of glucagon antiserum strongly stimulated basal secretion in the perfusate total glucagon (free + antibody bound glucagon) and also enhanced its response to arginine, but free glucagon was undetectable in the perfusate during the infusion. On the other hand, the glucagon antiserum had no significant effect on either insulin or somatostatin secretion. Moreover, electron microscopic study revealed degrannulation and vacuolization in the cytoplasm of the A cells after exposure to glucagon antiserum, suggesting a hypersecretion of glucagon, but no significant change was found in the B cells or the D cells. We conclude that in a single pass perfusion system glucagon antiserum does not affect somatostatin or insulin secretion, although it enhances glucagon secretion.  相似文献   

14.
Immunoreactive calcitonin gene-related peptide (CGRP) has been shown to occur in intrapancreatic nerves and islet somatostatin cells in the rat. Therefore, we investigated the effects of CGRP on insulin and glucagon secretion in the rat. CGRP was infused i.v. at one of 3 dose levels (4.3, 17 or 68 pmol/min). Infusion of CGRP alone was found to elevate basal plasma levels of both insulin and glucagon. In contrast, CGRP impaired the plasma insulin responses to both glucose (7 mg/min; P less than 0.001) and arginine (8.5 mg/min; P less than 0.001), and inhibited the arginine-induced increase in plasma glucagon concentrations (P less than 0.001). Since CGRP and somatostatin are colocalized within the D-cells, we also infused CGRP and somatostatin together at equimolar dose levels (17 pmol/min), with glucose (7 mg/min). By that, the increase in plasma insulin concentrations decreased more rapidly than during infusion of either peptide alone. Since alpha 2-adrenoceptor activation is known to inhibit glucose-stimulated insulin secretion, we also infused CGRP together with the specific alpha 2-adrenoceptor antagonist yohimbine (37 nmol/min). In that way, the plasma insulin-lowering effect of CGRP was prevented. We have shown in the rat: (1) that CGRP stimulates basal insulin and glucagon secretion; (2) that CGRP inhibits stimulated insulin and glucagon secretion; (3) that CGRP and somatostatin more rapidly induce a potent inhibitory action on glucose-stimulated insulin secretion when given together; and (4) that the alpha 2-adrenoceptor antagonist, yohimbine, counteracts the inhibitory action of CGRP on glucose-stimulated insulin secretion. We suggest that CGRP is of importance for the regulation of insulin and glucagon secretion in the rat. The mechanisms behind the islet effects of CGRP can not be established by the present results, though they apparently require intact alpha 2-adrenoceptors.  相似文献   

15.
To determine the effects of chronic hyperinsulinemia on glucagon release, rats were made hyperinsulinemic for 14 days by supplementation of drinking water with sucrose (10%; sucrose-fed) to increase endogenous release or by implantation of osmotic minipumps (subcutaneous, s.c.; or intraperitoneal, i.p.) to deliver exogenous insulin (6 U/day). Both s.c. and i.p. rats also had sucrose in the drinking water to prevent hypoglycemia. Plasma insulin levels were significantly elevated in sucrose-fed, s.c., and i.p. rats. However, glucose levels were significantly elevated in sucrose-fed rats only. Surprisingly, plasma glucagon concentrations were elevated in i.p. and s.c. rats and were not suppressed in sucrose-fed rats. Inverse relationships were found between the plasma levels of insulin and glucose (n = 65; r = -0.42, p less than 0.0001) and between glucose and glucagon (n = 73; r = -0.46, p less than 0.0001). However, unexpectedly, a positive correlation between insulin and glucagon (n = 65; r = 0.47, p less than 0.0001) was established. As suppression of plasma glucagon levels below basal was not observed in any of the hyperinsulinemic or hyperglycemic rats, we wished to establish further whether pancreatic glucagon release could be suppressed below basal levels in the rat by another means. Thus, high doses of somatostatin (50-100 micrograms.kg-1.min-1) were infused for 45 min into normal rats without or with a concomitant hyperinsulinemic, hyperglycemic glucose clamp. Somatostatin fully suppressed insulin, but although plasma glucagon levels were decreased by somatostatin infusion relative to saline-infused animals, there was still no suppression below basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

17.
The effect of arginine infusion on blood glucose and plasma levels of insulin, C-peptide and glucagon has been studied in leukemic children before and after treatment with L-asparaginase (10,000 U/m2/day for 10 days). Therapy induced a significant reduction in basal and peak blood glucose, insulin and C-peptide levels, while glucagon was unmodified. The conserved C-peptide-insulin molar ratio suggests the interference of L-asparaginase with proinsulin synthesis. In conclusion our results prove a decreased insulin reserve with a preserved, although reduced, beta-cell function.  相似文献   

18.
In an attempt to know the role of the pineal gland on glucose homeostasis, the blood plasma concentrations of glucose, insulin and glucagon under basal conditions or after the administration of nutrients were studied in the jugular vein of conscious pinealectomized (Pn), melatonin-treated pinealectomized (Pn + Mel) and control (C) rats. Glucose levels were smaller in C than in Pn rats, while immunoreactive insulin (IRI) concentrations were significantly greater in C than in Pn rats. Contrary to this, immunoreactive glucagon (IRG) levels were significantly greater in Pn than in C animals. Melatonin treatment of Pn rats induces an increase of IRI concentrations and a reduction in IRG levels. Similar changes were obtained when hormonal determinations were carried out in portal blood plasma. Although ether anesthesia increases circulating glucagon levels in the porta and cava veins, the qualitative changes of plasma insulin and glucagon in Pn and Pn + Mel were similar to those found in conscious rats. To determine the effects of nutrients on pancreatic hormone release, intravenous arginine or oral glucose were administered to the animals of the three experimental groups. In C rats, both glucose and IRI levels reached a peak 30 minutes after glucose ingestion, decreasing thereafter. However, in Pn rats a glucose intolerance was observed, with maximum glucose and insulin concentrations at 60 minutes, while in Pn + Mel animals, glucose and IRI concentrations were in between the data obtained with the other two groups. Furthermore, glucose ingestion induced a significant reduction of IRG levels in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

20.
Hyperinsulinemic hypoglycemia is a recently described complication of Roux‐en‐Y gastric bypass (RYGB). We hypothesized that glucagon administration would help maintain normal postprandial plasma glucose concentrations by stimulating hepatic glucose output, and if so, represent a new therapeutic option for postbypass hypoglycemia. In this study, we compared the insulin and glycemic response to a mixed meal with and without concomitant glucagon infusion in a patient with severe recurrent hypoglycemia after RYGB. Although effective in transiently raising postprandial plasma glucose values, glucagon infusion was also associated with higher insulin concentrations, and failed to prevent symptomatic hypoglycemia. This case demonstrates that glucagon may have limited clinical utility in the treatment of post‐RYGB hyperinsulinemic hypoglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号