首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bradykinin-evoked rises in [Ca2+]i were measured in fura-2-loaded bovine pulmonary artery endothelial cell monolayers by dual wavelength excitation fluorimetry. In monolayers seeded thinly and grown to confluence, bradykinin, in the presence of external Ca2+, evoked a rise in [Ca2+]i composed of an initial peak and subsequent oscillating plateau. In the absence of external Ca2+, bradykinin evoked a rise in [Ca2+]i which then returned to the basal value without oscillating. In monolayers seeded near confluent density, the bradykinin-evoked peak in [Ca2+]i was followed by a steady plateau which showed no oscillation. The addition of the phorbol ester, phorbol 12,13-dibutyrate, to a monolayer during bradykinin-evoked oscillations abolished the oscillations and lowered [Ca2+]i partway back toward the basal level. The addition of the protein kinase C inhibitor, H7, did not abolish oscillatory activity, although the frequency of oscillation was reduced. These results indicate that synchronized oscillatory activity can occur in endothelial cell monolayers. It is suggested that these oscillations are dependent on intercellular coupling developed when the cells are grown to confluence and that the mechanism responsible for generating oscillations in [Ca2+]i requires extracellular Ca2+ and involves protein kinase C.  相似文献   

2.
Bovine pulmonary artery endothelial cells (BPAEC) were cultured in vitro under a variety of conditions to investigate how metallothionein (MT) might participate in zinc homeostasis. Experimental conditions included 10% serum to ensure that the in vitro environment would be a better reflection of the in vivo situation than with protein-free medium. MT was increased by acutely high zinc concentrations (100-200 micromol/L) in the extracellular environment. MT was relatively insensitive to moderate changes in zinc concentration (2-50 micromol/L), even after prolonged exposure for 7 to 12 days. BPAEC had reduced MT content when grown in medium containing serum that had been dialyzed to remove components with a molecular mass of less than 1,000, including zinc. Because the principal source of the major minerals in the experimental medium was not the serum, their concentrations in the final medium were not significantly influenced by serum dialysis. Restoring the zinc concentration in the medium containing the dialyzed serum did not restore MT content in BPAEC, suggesting that some small molecular weight molecule other than zinc established their basal MT content. This study did not identify these putative factors in serum, but hormones are likely candidates. Forty-eight-hour incubations of BPAEC with interleukin (IL-6) or dexamethasone increased cellular MT; however, 17beta-estradiol decreased MT, and IL-1 and adenosine 3',5'-cyclic phosphate (cAMP) had no discernible effect. We conclude that extracellular zinc concentrations have relatively little impact on the cellular concentrations of MT and zinc of BPAEC in vitro. Zinc homeostasis by BPAEC is not maintained by changing the MT concentration in response to changes in the extracellular zinc environment. (J. Nutr. Biochem. 10:00-00, 1999).  相似文献   

3.
We studied adherence between 'luminal' surfaces of pulmonary artery endothelial cells by standard aggregometry techniques, widely used for measuring aggregation of platelets and granulocytes. Using suspensions of bovine pulmonary artery endothelial cells cultured on microcarrier beads, in an aggregometer, we found that trypsin caused endothelial aggregation. The aggregation response occurred at trypsin concentrations as low as 0.001%. The degree of trypsin-induced aggregation indicated by the magnitude of the change in light transmission through the endothelial suspensions was related to the trypsin concentration, reaching a maximum level at trypsin concentrations of 0.01%. We conclude that trypsin, even in very low concentrations, causes adherence between 'luminal' surfaces of pulmonary endothelial cells probably because the enzyme destroys cell surface proteins which are necessary to prevent intercellular adherence. The method we describe may be useful for studying cell-cell interactions of endothelium.  相似文献   

4.
Conventional methods of endothelial cell culture on monolayers and beads require enzymatic digestion, traumatic scraping, or centrifugation to transfer cells to other experimental systems. Gelfoam, a porous gelatin block, not only supports the growth of bovine pulmonary artery endothelial cells but also allows the rapid transfer of cell-laden blocks from one experimental system to another with minimal intervention. This property has been shown to be especially useful for the rapid fixation of endothelial cells for microscopy using standard histologic methods. Histology confirmed that the trabecular nature of the substrate allows endothelial cells to line the interstices of the sponge matrix and grow in a configuration that simulates the appearance of the endothelium in small vessels and capillaries. The inoculation of 1 x 10(5) endothelial cells on 7.5 mg Gelfoam (24 x 8 x 2 mm blocks) was enhanced by fibroblast growth factor and resulted in cell attachment by day 2 with a cell doubling time of 1.7 days. In addition, endothelial cells completely infiltrated 1, 5 and 7.5 mg Gelfoam blocks, as verified by histology. Assays to quantify cell number and protein were easily performed. To facilitate cell counting, the Gelfoam matrix was rapidly removed by the addition of 0.05 mg/ml collagenase, a concentration that interfered minimally with the assay for cellular protein concentration. The data demonstrate that Gelfoam is a suitable support growth matrix for the in vitro culture of bovine pulmonary artery endothelial cells.  相似文献   

5.
It has recently been appreciated that thrombin induces the retraction of endothelial cells resulting in an alteration of the integrity of the monolayers. We studied thrombin-induced changes in cytosolic calcium concentration (Ca2+i) using microfluorometry of fura-2-loaded single cells, cell topography (scanning electron microscopy), and cytoskeleton (rhodamine phalloidin) in endothelial cells. Thrombin caused an initial and sustained phase of an increase in Ca2+i. Pretreatment with pertussis toxin abolished both phases of Ca2+i response. Sustained phase of thrombin effect required extracellular calcium. Pretreatment of endothelial cells with indomethacin protracted the sustained phase, whereas a lipoxygenase inhibitor, nordihydroguaiaretic acid curtailed it. Thrombin caused a marked retraction of confluent endothelial cells coincident with the sustained phase of Ca2+i response. This was paralleled by the formation of gaps in F-actin distribution at the periphery of the cells. Pretreatment of endothelial cells with nordihydroguaiaretic acid blunted the thrombin-induced cell retraction. Microinjection of various putative messengers into the endothelial cells showed that initial Ca2+ mobilization is not sufficient to account for sustained elevation of Ca2+i. The sustained response required microinjection of phospholipase A2 or co-injection of phospholipase A2 with phosphatidylinositol 4,5-bisphosphate-specific phospholipase C, phosphatidylinositol 1,4,5-trisphosphate, or CaCl2, further implying that thrombin receptor(s) can be coupled to both phospholipases C and A2. Sustained elevation of Ca2+i was a necessary prerequisite for the thrombin-induced changes in endothelial cell topography.  相似文献   

6.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe. Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5μM; and was maximally effective at 50μM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+i than indomethacin. Prostaglandin F (PGF) as well as prostaglandin E2 (PGE2) increased [Ca2+ in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

7.
Agonist induced increases in intracellular free calcium, [Ca2+]i, were measured in single Fura-2 loaded bovine aortic endothelial (BAE) cells by dual wavelength microspectrofluorimetry. Low doses of ATP (less than 10 microM) induced complex changes in [Ca2+]i. These changes usually consisted of a large initial transient peak with subsequent fluctuations superimposed upon a maintained rise in [Ca2+]i. Higher doses of ATP (greater than 50 microM) produced much simpler biphasic increases in [Ca2+]i in individual cells. Acetylcholine and bradykinin also elicited increases in [Ca2+]i in single cells in confluent monolayers of endothelial cells. However, only acetylcholine produced complex fluctuations. High doses of acetylcholine evoked simple rises in [Ca2+]i similar to those seen with high doses of ATP. In contrast, bradykinin evoked relatively simple rises in [Ca2+]i at all doses used. These results indicate that the mechanisms responsible for generating agonist induced increases in [Ca2+]i in BAE cells are not homogeneous. ATP and acetylcholine produced more complex Ca2+ changes or 'signatures' in single confluent bovine aortic endothelial cells than bradykinin. All three agonists appeared to release Ca2+ from intracellular stores as well as stimulating Ca2+ influx. The possible mechanisms underlying these phenomena are discussed.  相似文献   

8.
Extracellular ATP and UTP caused increases in the concentration of cytoplasmic free calcium ([Ca2+]i) and the intracellular level of inositol 1,4,5-trisphosphate (IP3), a second messenger for calcium mobilization, prior to the release of prostacyclin (PGI2) from cultured bovine pulmonary artery endothelial (BPAE) cells. The agonist specificity and dose-dependence were similar for nucleotide-mediated increases in IP3 levels, [Ca2+]i and PGI2 release. An increase in [Ca2+]; and PGI2 release was observed after addition of ionomycin, a calcium ionophore, to BPAE cells incubated in a calcium-free medium. The addition of ATP to the ionomycin-treated cells caused no further increase in [Ca2+]i or PGI2 release. The inability of ATP to cause an increase in [Ca2+]i or PGI2 release in ionomycin-treated cells was apparently due to the ionomycin-dependent depletion of intracellular calcium stores since the subsequent addition of extracellular calcium caused a significant increase in both [Ca2+]i and PGI2 release. Introduction of BAPTA, a calcium buffer, into BPAE cells inhibited ATP-mediated increases in [Ca2+]i and PGI2 release, further evidence that PGI2 release is dependent upon an increase in [Ca2+]i. The increase in [Ca2+]i elicited by ATP apparently caused the activation of a calmodulin-dependent phospholipase A2 since trifluoperazine, an inhibitor of calmodulin, and quinacrine, an inhibitor of phospholipase A2, prevented the stimulation of PGI2 release by ATP. Furthermore, ATP caused the specific hydrolysis of [14C]arachidonyl-labeled phosphatidylcholine and the generation of free arachidonic acid, the rate-limiting substrate for PGI2 synthesis, prior to the release of PGI2 from BPAE cells. These findings suggest that the increase in PGI2 release elicited by ATP and UTP is at least partially dependent upon a phospholipase C-mediated increase in [Ca2+]i and the subsequent activation of a phosphatidylcholine-specific phospholipase A2. ATP analogs modified in the adenine base or phosphate moiety caused PGI2 release with a rank order of agonist potency of adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) greater than 2-methylthioATP (2-MeSATP) greater than ATP, whereas alpha, beta methyleneATP and beta, gamma methyleneATP had no effect on PGI2 release.  相似文献   

9.
In the present study, I have examined the effect of lanthanum (La3+) on cytoplasmic free calcium concentration in isolated rat thymocytes employing the quin2 technique. As with its effect on 15Ca accumulation in rat thymocytes (Segal, J. and Ingbar, S.H. (1984) Endocrinology, 115, 160-166), La3+ produced a concentration-related increase in thymocyte cytoplasmic free calcium concentration. This effect of La3+ was very prompt in onset, evident within about 30 s from the time of addition of La3+. The lowest effective concentration of La3+ was 6 microM (+22.7% above control), and it increased progressively to reach maximal values at 25 microM (+100% above control). La3+ added to quin2-loaded thymocytes suspended in a calcium-free medium was without effect. In addition, La3+ had no significant effect on 45Ca efflux, and La3+ did not inhibit calcium-ATPase activity in the rat thymocytes. These results demonstrate that in rat thymocytes La3+ increases cytoplasmic free calcium concentration by increasing the extracellular calcium influx into the cell rather than the release of calcium from an intracellular pool.  相似文献   

10.
Prostaglandins (PGs) are autocrine or paracrine hormones that may interact with circulating hormones such as parathyroid hormone (PTH) in bone. We examined the interaction of the PGs, PGF2 alpha, PGE2, and 6-keto-PGF1 alpha with PTH to enhance the rapid, initial transient rise in free cytosolic calcium ([Ca2+]i) and cAMP levels stimulated by PTH. Pretreatment of UMR-106, MC3T3-E1, and neonatal rat calvarial osteoblast-like cells by PGs resulted in an enhancement of the early transient rise in [Ca2+]i stimulated by PTH. PGF2 alpha was approximately 100 times more potent than PGE2. PGE2 itself was more potent than 6-keto-PGF1 alpha in enhancing PTH-stimulated rise in [Ca2+]i. Near-maximal augmentation was achieved at PGF2 alpha doses of 10 nM and PGE2 of 1 microM. The degree of augmentation in [Ca2+]i by PGF2 alpha was independent of preincubation time. PGF2 alpha pretreatment did not alter the EC50 for the PTH-induced [Ca2+]i increase but only the extent of rise in [Ca2+]i at each dose of PTH. The augmented increase in [Ca2+]i was mostly due to enhanced PTH-mediated release of Ca2+ from intracellular stores. PGF2 alpha did not stimulate an increase in PTH receptor number as assessed by [125I]-PTH-related peptide binding. PG pretreatment partially reversed PTH inhibition of cell proliferation, suggesting that an increase in [Ca2+]i may play a role in tempering the anti-proliferative effect of PTH mediated by cAMP. These studies suggest a new mode by which PGs can affect cellular activity.  相似文献   

11.
To evaluate the regulation of endothelial cell Cu,Zn-SOD, we have exposed bovine pulmonary artery endothelial cells in culture to hyperoxia and hypoxia, second messengers or related agonists, hormones, free radical generating systems, endotoxin, and cytokines and have measured Cu,Zn-SOD protein of these cells by an ELISA developed in our laboratory. Control preconfluent and confluent cells in room air contained 196 +/- 18 ng Cu,Zn-SOD/10(6) cells. A23187 (0.33 microM), forskolin (10 microM), isobutylmethylxanthine (0.1 mM), dexamethasone (1 microM), triiodothyronine (1 microM) and retinoic acid (1 microM) failed to alter this level of Cu,Zn-SOD. Exposure to anoxia and hyperoxia both elevated the level approximately 1.5-2.0-fold over 20% oxygen-exposed controls at 48-72 hr. Similarly, exposures to glucose oxidase (0.0075 units/ml), menadione (12.5 microM), xanthine-xanthine oxidase (10 microM, 0.03 units/ml) and H2O2 (0.0005%) increased the level up to two-threefold over controls at 24-48 hr. Lipopolysaccharide, TGF beta 1, TNF alpha, and Il-1 also increased levels of cellular Cu,Zn-SOD, but only in proliferating cells. Il-2, Il-4, interferon-gamma, and GM-CSF had no effect on Cu,Zn-SOD. All treatments that elevated SOD resulted in inhibition of cellular growth, but decreased growth of cells at confluence alone was not associated with increased Cu,Zn-SOD. We propose from these studies that Cu,Zn-SOD of endothelial cells is not under conventional second messenger or hormonal regulation, but that up-regulation of the enzyme is associated with (and perhaps stimulated by) free-radical or oxidant production that also may be influenced by availability of certain cytokines under replicating conditions.  相似文献   

12.
The effect of platelet-activating factor (PAF-acether) on cytosolic free calcium, [Ca2+]i, in adherent human vascular endothelial cells in culture was directly determined using a new fluorescent calcium indicator, fura-2. It was found that PAF-acether but not lyso PAF-acether induced a rapid and transient increase in [Ca2+]i in endothelial cells. Restimulation with PAF-acether after the first challenge did not cause further response, while the cells were able to respond to thrombin. In the absence of extracellular calcium, PAF-acether evoked a similar transient increase, suggesting that PAF-acether raises [Ca2+]i mainly by discharging calcium from intracellular pools. PAF-acether-induced rise in [Ca2+]i was completely blocked by a specific antagonist, BN 52021. These results suggest the receptor-mediated increase in [Ca2+]i as an early event in PAF-acether activation of human vascular endothelial cells.  相似文献   

13.
Bovine pulmonary artery endothelial cells, in serum-free culture medium, release small quantities of prostacyclin and thromboxane A2 (3-10 and 0.1-0.3 ng/ml; measured as immunoreactive 6-ketoprostaglandin F1 alpha and thromboxane B2, respectively). The release of these substances is stimulated by up to 20-fold during a 3 min incubation with the vasodilator, bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). Endothelial cells incubated with [3H]arachidonic acid for 24 h and then exposed to bradykinin for 3 min release 3H into the medium, approximately 65% of which co-chromatographs with 6-ketoprostaglandin F1 alpha and 3% with thromboxane B2. The effects of bradykinin are dose-related and are often discernible when the hormone is used at concentrations believed to occur physiologically (10 pg/ml; approximately 10 pM). Furthermore, the bradykinin molecule must be intact: none of its lower homologs affects the release of prostacyclin, thromboxane A2, or 3H unless used at concentrations (1 microM or higher) unlikely to be achieved in vivo. The release appears to involve calcium uptake and calmodulin: it is abolished by EGTA (5 mM) and inhibited by the 'slow channel' calcium antagonists, verapamil and nifedipine (10-100 microM), and by the calmodulin inhibitor, trifluoperazine (3-30 microM). Our findings suggest that bradykinin exerts some of its hormonal effects by acting on specific receptors possessed by vascular endothelial cells; receptor activation is associated with calcium transport, arachidonate mobilization, and a selective synthesis of prostacyclin, a vasodilator in its own right.  相似文献   

14.
The effects of the alpha 1-adrenergic agonist phenylephrine and the peptide hormones angiotensin II and arg8-vasopressin on cytoplasmic free calcium concentration were investigated in single rat hepatocytes microinjected with the photoprotein aequorin. Hepatocytes responded to physiological concentrations of the glycogenolytic agonists with a series of repetitive Ca transients. In each transient free Ca rose in 2-3s to above 600 nM from a resting level of 200 nM. Transient duration depended on the agonist and ranged from approximately 7s for phenylephrine to approximately 15s for angiotensin. Transient frequency, but not shape or size, depended on agonist concentration. The period ranged from less than 20s to several minutes. We suggest that the frequency of the Ca transients is the principal determinant of the amplitude of the cellular response to calcium-mobilizing agonists.  相似文献   

15.
The C-terminal octapeptide of cholecystokinin (CCK-8) is known to stimulate insulin secretion. We examined its effects on the cytoplasmic free calcium concentration ([Ca2+]IC) in isolated rat pancreatic islet cells. At 8.3 mM glucose and 1.28 mM Ca2+, CCK-8 (100 nM) rapidly increased [Ca2+]IC to a short-lived peak, whereafter the [Ca2+]IC, within 1.5 minutes, fell to values below baseline. CCK-8 also rapidly increased the [Ca2+]IC at 3.3 mM glucose and in a calcium deficient medium. However, either at low glucose or in the absence of extracellular Ca2+, the post-peak [Ca2+]IC did not fall below baseline levels. The CCKA receptor antagonist, L-364,718 (20 nM), inhibited the effects of CCK-8 on [Ca2+]IC. The results suggest that CCK-8 in islet cells liberates calcium from intracellular stores by activating CCKA receptors.  相似文献   

16.
Free intracellular calcium acts as a messenger in response to extracellular stimuli, including those that result in cellular proliferation. For example, mitogenic lectins have been shown to increase intracellular calcium concentration ([Ca+2]i) during proliferation of T lymphocytes. To determine if similar changes in [Ca+2]i occur when T cells are activated by nominal antigen, [Ca+2]i was measured in murine T cells from a bovine insulin-specific, major histocompatibility-restricted T hybridoma by using the calcium-sensitive fluor quin-2. Quin-2-loaded T hybridoma cells were activated by incubation with antigen-pulsed antigen-presenting cells (APC) and [Ca+2]i determined by measurement of quin-2 fluorescence. T cell [Ca+2]i rose sharply within 20 min after incubation with APC. Incubation of T cells with unpulsed APC resulted in [Ca+2]i not significantly different from resting levels. Further evidence that this activation was antigen specific was demonstrated at the level of both the APC and the T cell. Incubation of quin-2-loaded T cells with APC pulsed with the inappropriate antigen, porcine insulin, did not result in an increase in [Ca+2]i. Additionally, pretreatment of T cells with a monoclonal antibody against the T cell antigen receptor abrogated the [Ca+2]i increase. Finally, the antigen-induced rise in [Ca+2]i could be blocked by pretreatment of APC with appropriate but not inappropriate Ia monoclonal antibodies. These results suggest that a rapid rise in [Ca+2]i is an early event in the antigen-specific activation of the T cell and may be related to later steps, such as the secretion of lymphocyte monokines.  相似文献   

17.
We have examined the effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner (threshold dose, 0.1 ng/ml; maximal dose, 10-100 ng/ml). The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP) abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56 degrees C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of 125I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa. The complex could be detected by chromatography on Sephadex G-100, but not by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These findings suggest that low doses of endotoxin suppress fibrinolytic activity in endothelial cells by stimulating the production or expression of a fast-acting, relatively labile inhibitor of plasminogen activator.  相似文献   

18.
Bovine pulmonary artery endothelial cells in culture were exposed for up to 7 d to a gas mixture containing 80% O2, 5% CO2, and 15% N2 (hyperoxia) and were compared by phase contrast and electron microscopy to cells exposed to a gas mixture containing 20% O2, 5% CO2, and 75% N2. Cells exposed to hyperoxia became enlarged and showed vacuolization and increased lysosomes within 24 to 48 h. These changes were progressive over the 7 d period of exposure. Between 3 and 7 d of exposure to hyperoxia the cells showed reductions in polysomes and endoplasmic reticulum. Despite the other marked cytoplasmic changes, the appearance of mitochondria of oxygen-exposed cells remained unchanged from those of air-exposed cells throughout the 7 d period. Preconfluent and confluent cells responded qualitatively similarly to hyperoxia, but morphological evidence of injury occurred more rapidly for preconfluent cells. We conclude that the initial early structural injury of the endothelial cell exposed to hyperoxia occurs in lysosomes and that the mitochondrial structure is relatively resistant to injury.  相似文献   

19.
Sodium arsenite is one of a number of agents reported to induce a 30-34 kDa 'stress' protein in cells. Other agents which induce this stress protein, including diethyl maleate (DEM) and H2O2, have also been reported to be inducers of cystine transport in fibroblasts, macrophages, endothelial cells and other cell types. We have determined that micromolar levels of sodium arsenite increase cystine transport in bovine pulmonary artery endothelial cells (BPAEC), resulting in increases in intracellular glutathione (GSH). The increase in cystine transport appears to be due to stimulation of the synthesis of a protein analogous to the xc- transport system, a sodium-independent system specific for cystine and glutamate. We have determined that this stimulation is maximal between 8-16 h after addition of sodium arsenite and is inhibited by exogenous GSH. Others have reported that synthesis of the 30-34 kDa stress protein is maximal between 2-4 h and returns to baseline by 6-10 h. We conclude that cystine transport may be considered a 'secondary' stress response and is likely to be modulated by sulfhydryl-reactive agents.  相似文献   

20.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of oxygen tension on proteoglycan synthesis. Cells exposed to 3% O2 (hypoxia) for 72 h and then labeled with [35S]sulfate for 5 h accumulated significantly less [35S]proteoglycan in medium than cells exposed to 20% O2 (control). This decrease was due primarily to a reduction in heparan sulfate. Cells exposed to 80% O2 (hyperoxia) for 72 h secreted slightly more [35S]proteoglycan into medium than controls. Greater accumulation of chondroitin sulfate was responsible for the increase. The amount of cell-associated proteoglycan did not change significantly in cells cultured in 3% or 80% O2 as compared with control cells cultured in 20% O2. Proteoglycans produced by hypoxia- or hyperoxia-treated cells were found to be similar in size to proteoglycans produced by cells cultured at 20% O2. Glycosaminoglycan sulfation, as measured by ion-exchange chromatography, did not appear to change with varying oxygen tensions. Our results demonstrate that production of proteoglycans secreted by endothelial cells in culture is sensitive to oxygen tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号