首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inhibitory effect of the predominantly alpha-2 adrenoceptor agonist, guanabenz, on the peristaltic reflex and on the pendular movements of the rabbit isolated ileum was investigated. Guanabenz depressed or abolished the peristaltic reflex as well as the pendular movements. These effects were concentration-dependent. Guanabenz is much more potent inhibiting the peristaltic reflex (IC50 1 X 10(-7) M) than the pendular movements (IC50 1 X 10(-5) M). The choline ester, acetylcholine restored the peristaltic reflex and the anticholinesterase, eserine, restored the pendular movements previously abolished by guanabenz. During the blockade of the peristaltic reflex produced by guanabenz, the pendular movements were virtually not changed. It is therefore reasonable to suppose that the inhibitory effect of guanabenz reflects the different properties of alpha-2 adrenoceptors associated with cholinergic nerve terminals within the myenteric plexus and the longitudinal smooth muscle subserving the peristaltic reflex and the pendular movements.  相似文献   

2.
Because brachiating locomotion is characterized by a pattern of swinging movements, brachiation has often been analogized to pendular motion, and aspects of the mechanics of pendular systems have been used to provide insight into both energetic and structural design aspects of this locomotor mode. However, there are several limitations to this approach. First, the motions of brachiating animals only approximate pendular motion, and therefore the energetics of these two systems are only roughly comparable. Second, the kinematic similarity between brachiation and pendular motion will be maximal at only one velocity, and the correspondence will be even less at greater or lesser speeds. Third, all forms of terrestrial locomotion that involve the use of limbs incorporate elements of pendular systems, and therefore brachiation is not unusual in this respect. Finally, it has been suggested that the mechanics of pendular motion will constrain the maximum attainable body size of brachiating animals and that this mechanical situation explains the lack of brachiating primates of greater than 30-kg body size; the present analysis provides evidence that the constraints on body size are far less strict than previously indicated and that extrinsic factors such as the geometry of the forest environment are more likely to dictate maximum body size for brachiators.  相似文献   

3.
In contrast to the mechanisms of segmental and peristaltic contractions in the small intestine, not much is known about the mechanism of pendular contractions. High-resolution electrical and mechanical recordings were performed from isolated segments of the rabbit ileum during pendular contractions. The electrical activities were recorded with 32 extracellular electrodes while motility was assessed simultaneously by video tracking the displacements of 20-40 serosal markers. The electrical activities consisted of slow waves, followed by spikes, that propagated in either the aboral or oral direction. The mechanical activity always followed the initial electrical activity, describing a contraction phase in one direction followed by a relaxation phase in the opposite direction. Pendular displacements were always in rhythm with the slow wave, whereas the direction of the displacements was dictated by the origin of the slow wave. If the slow wave propagated aborally, then the pendular displacement occurred in the oral direction, whereas if the slow wave propagated in the oral direction, then the displacement occurred in the aboral direction. In the case of more complex propagation patterns, such as in the area of pacemaking or collision, direction of displacements remained always opposite to the direction of the slow wave. In summary, the direction and pattern of propagation of the slow wave determine the rhythm and the direction of the pendular motility. The well-known variability in pendular movements is caused by the variability in the propagation of the underlying slow wave.  相似文献   

4.
Congenital nystagmus (CN) is a disorder of the ocular motility characterized by oscillatory eye movements preventing the correct fixation of a target. Many typical waveforms of eye position recordings have been recognized and classified in the literature: in jerk CN a slow phase eye movement is followed by a fast phase, giving rise to a typical saw-tooth waveform, while in pendular CN the eyes exhibit a periodic motion, giving rise to an approximately sinusoidal waveform. Dual jerk waveforms seemed to show small, rapid oscillations superimposed on a jerk-like waveform, thus being originary classified as a mixture of jerk and pendular CN. On the contrary, a theoretical model of CN has appeared recently, which suggests a possible interpretation of the small amplitude oscillations in dual jerk waveforms as consecutive pieces of growing and decaying exponentials.By spectral analysis of dual jerk waveforms in a number of patients with CN, we show that the oscillations are truly sinusoidal in nature, thus suggesting the possibility of a different explanation of dual jerk waveforms in CN.Preliminary results of this work were presented at XIV ICMP —International Congress of Medical Physics, Espoo, Finland, 11–16 August 1985  相似文献   

5.
The hypocotyls of Arabidopsis thaliana seedlings exhibit circumnutations with different frequency ranges. Using a picture-analysis system, two types of oscillations were distinguished, short period (SPN) and long period nutations (LPN). The period of the SPNs is between 20 and 60 min, decreases with increasing temperature (between 20° and 30°C; Q 10 of 2.0) and increases with age. The SPNs changed frequently between circular and pendular movements. The circumnutation usually occurred clockwise, but the direction could change. For SPNs to occur, a minimum growth rate of 0.05 mm/h was required. The period of the LPNs ranged from 1 to 8 h. Peaks occurred around 95 and 200 min. The movements of the LPNs are mostly counterclockwise. The oscillation could change from circular to elliptic or pendular. In contrast to SPNs, LPNs were found also at low growth rates. Under red light and in the strain Landsberg erecta the circumnutations were especially slow. Short and long period oscillations can occur simultaneously or separately in different plants. In cases of simultaneous occurrence the quotient between the period lengths of the LPN and SPN was not constant. The number of occurrences of these frequencies depended on the strain and on external factors such as temperature and light. In continuous bright white light phases of circumnutations alternated with quiescent periods. This behaviour was circadian and correlated with growth bursts.  相似文献   

6.
The hypocotyls of Arabidopsis thaliana seedlings exhibit circumnutations with different frequency ranges. Using a picture-analysis system, two types of oscillations were distinguished, short period (SPN) and long period nutations (LPN). The period of the SPNs is between 20 and 60 min, decreases with increasing temperature (between 20° and 30°C; Q 10 of 2.0) and increases with age. The SPNs changed frequently between circular and pendular movements. The circumnutation usually occurred clockwise, but the direction could change. For SPNs to occur, a minimum growth rate of 0.05 mm/h was required. The period of the LPNs ranged from 1 to 8 h. Peaks occurred around 95 and 200 min. The movements of the LPNs are mostly counterclockwise. The oscillation could change from circular to elliptic or pendular. In contrast to SPNs, LPNs were found also at low growth rates. Under red light and in the strain Landsberg erecta the circumnutations were especially slow. Short and long period oscillations can occur simultaneously or separately in different plants. In cases of simultaneous occurrence the quotient between the period lengths of the LPN and SPN was not constant. The number of occurrences of these frequencies depended on the strain and on external factors such as temperature and light. In continuous bright white light phases of circumnutations alternated with quiescent periods. This behaviour was circadian and correlated with growth bursts.  相似文献   

7.
Calcium chloride acting from the serosal surface blocked the peristaltic reflex and at the same time, after about 30 minutes, evoked pendulum type of activity in the longitudinal muscle of the guinea-pig isolated ileum, subjected to constant intraluminal pressure. Hexamethonium, tetraethylammonium, morphine, methadone and atropine blocked, while, neostigmine potentiated the pendulum movements evoked by calcium chloride. In the Magnus preparation of the guinea-pig isolated ileum calcium chloride also caused pendulum type of activity. From these experiments it is concluded that calcium chloride evoked pendular movements by stimulating the postganglionic cholinergic nerves in the longitudinal muscle of the guinea-pig isolated ileum.  相似文献   

8.
The study of eye movements and oculomotor disorders has, for four decades, greatly benefitted from the application of control theoretic concepts. This paper is an example of a complementary approach based on the theory of nonlinear dynamical systems. Recently, a nonlinear dynamics model of the saccadic system was developed, comprising a symmetric piecewise-smooth system of six first-order autonomous ordinary differential equations. A preliminary numerical investigation of the model revealed that in addition to generating normal saccades, it could also simulate inaccurate saccades, and the oscillatory instability known as congenital nystagmus (CN). By varying the parameters of the model, several types of CN oscillations were produced, including jerk, bidirectional jerk and pendular nystagmus. The aim of this study was to investigate the bifurcations and attractors of the model, in order to obtain a classification of the simulated oculomotor behaviours. The application of standard stability analysis techniques, together with numerical work, revealed that the equations have a rich bifurcation structure. In addition to Hopf, homoclinic and saddlenode bifurcations organised by a Takens-Bogdanov point, the equations can undergo nonsmooth pitchfork bifurcations and nonsmooth gluing bifurcations. Evidence was also found for the existence of Hopf-initiated canards. The simulated jerk CN waveforms were found to correspond to a pair of post-canard symmetry-related limit cycles, which exist in regions of parameter space where the equations are a slow-fast system. The slow and fast phases of the simulated oscillations were attributed to the geometry of the corresponding slow manifold. The simulated bidirectional jerk and pendular waveforms were attributed to a symmetry invariant limit cycle produced by the gluing of the asymmetric cycles. In contrast to control models of the oculomotor system, the bifurcation analysis places clear restrictions on which kinds of behaviour are likely to be associated with each other in parameter space, enabling predictions to be made regarding the possible changes in the oscillation type that may be observed upon changing the model parameters. The analysis suggests that CN is one of a range of oculomotor disorders associated with a pathological saccadic braking signal, and that jerk and pendular nystagmus are the most probable oscillatory instabilities. Additionally, the transition from jerk CN to bidirectional jerk and pendular nystagmus observed experimentally when the gaze angle or attention level is changed is attributed to a gluing bifurcation. This suggests the possibility of manipulating the waveforms of subjects with jerk CN experimentally to produce waveforms with an extended foveation period, thereby improving visual resolution.  相似文献   

9.
Biological rhythmic movements can be viewed as instances of self-sustained oscillators. Auto-oscillatory phenomena must involve a nonlinear friction function, and usually involve a nonlinear elastic function. With respect to rhythmic movements, the question is: What kinds of nonlinear friction and elastic functions are involved? The nonlinear friction functions of the kind identified by Rayleigh (involving terms such as $\dot \theta ^3 $ ) and van der Pol (involving terms such as $\theta ^2 \dot \theta $ ), and the nonlinear elastic functions identified by Duffing (involving terms such as $\theta ^3 $ ), constitute elementary nonlinear components for the assembling of self-sustained oscillators. Recently, additional elementary nonlinear friction and stiffness functions expressed, respectively, through terms such as $\theta ^2 \dot \theta ^3 $ and $\theta \dot \theta ^2 $ , and a methodology for evaluating the contribution of the elementary components to any given cyclic activity have been identified. The methodology uses a quantification of the continuous deviation of oscillatory motion from ideal (harmonic) motion. Multiple regression of this quantity on the elementary linear and nonlinear terms reveals the individual contribution of each term to the oscillator's non-harmonic behavior. In the present article the methodology was applied to the data from three experiments in which human subjects produced pendular rhythmic movements under manipulations of rotational inertia (experiment 1), rotational inertia and frequency (experiment 2), and rotational inertia and amplitude (experiment 3). The analysis revealed that the pendular oscillators assembled in the three experiments were compositionally rich, braiding linear and nonlinear friction and elastic functions in a manner that depended on the nature of the task.  相似文献   

10.
A biomechanical model and mathematical formulation of the problem of propulsion of a solid non-deformable pellet by an isolated segment of the gut are presented. The organ is modeled as a soft orthotropic cylindrical biological shell. Its wall is reinforced by transversely isotropic muscle fibers of orthogonal type of weaving embedded in a connective tissue stroma. The mechanical properties of the wall are assumed to be nonlinear, deformations are finite. The longitudinal smooth muscle syncitium possesses anisotropic and the circular muscle syncytium has anisotropic electrical properties. Their electromechanical activity is under control of a pacemaker, which is represented by interstitial cells of Cajal. The model describes the dynamics of the generation and propagation of mechanical waves of contraction-relaxation along the surface of the bioshell and propulsion of the pellet. The governing system of equations was solved numerically. The combined finite-difference and finite-element method was used. The results demonstrate that pendular movements alone provide an aboral transit, without mixing though, of the bolus. Non-propagating segmental contractions show small amplitude librations of the pellet without its visible propulsion. Only the coordinated activity of both smooth muscle layers in a form of the peristaltic reflex provides physiologically significant simultaneous propulsion and mixing of the intraluminal content (pellet).  相似文献   

11.
Summary Feedback mechanisms exist in all the periferal sense organs including the eye, which acts as a highly efficient position control servo system. Histological studies so far have not revealed the precise circuitry of the eye movement control system but some information about it can be obtained by a study of the sources of feedback. Existing theories have considered three types of feedback originating in the oculomotor tract, in the proprioceptive fibres of the extrinsic eye muscles and from retinal image displacement. In the present experiments an optical arrangement has been used to vary or eliminate the amount of information available from retinal image motion, and the response of the eye to simple harmonic displacement of a target has been recorded. The response curves of gain (eyeball movement divided by target motion) against frequency indicate that the system is lion linear when the image falls in the retinal region which is insensitive to position. Outside this area, retinal image position is used as negative feedback but the information from the oculomotor tract must be regenerative. There is also evidence for feedback proportional to the first derivative of eyeball position and this function is ascribed to the proprioceptive signals; this form of feedback appears to saturate for large amplitude movements, thus avoiding heavy damping of the flick movements.A schematic eye movement control system having the same characteristics as the eye is proposed. The transfer function of this system indicates that it should be unstable if the sign of the retinal image feedback loop is reversed. Experiments with this form of feedback show that steady fixation is impossible and the eye performs a pendular nystagmus.  相似文献   

12.
For better understanding of the links between limb morphology and the metabolic cost of locomotion, we have characterized the relationships between limb length and shape and other functionally important variables in the straightened forelimbs and hindlimbs of a sample of 12 domestic dogs (Canis familiaris). Intra-animal comparisons show that forelimbs and hindlimbs are very similar (not significantly different) in natural pendular period (NPP), center-of-mass, and radius of gyration, even though they differ distinctly in mass, length, moment-of-inertia, and other limb proportions. The conservation of limb NPP, despite pronounced dissimilarity in other limb characteristics, appears to be the result of systematic differences in shape, forelimbs tending to be cylindrical and hindlimbs conical. Estimating limb NPP for other species from data in the literature on segment inertia and total limb length, we present evidence that the similarity between forelimbs and hindlimbs in NPP is generally true for mammals across a large size range. Limbs swinging with or near their natural pendular periods will maximize within-limb pendular exchange of potential and kinetic energy. As all four limbs of moderate- and large-size animals swing with the same period during walking, maximal advantage can be derived from the pendular exchange of energy only if forelimbs and hindlimbs are very similar in NPP. We hypothesize that an important constraint in the evolution of limb length and shape is the locomotor economy derived from forelimbs and hindlimbs of similar natural pendular period. J. Morphol. 234:183–196, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Sloths are morphologically specialized in suspensory quadrupedal locomotion and posture. During steady-state locomotion they utilize a trot-like footfall sequence. Contrasting the growing amount of published accounts of the functional morphology and kinematics of sloth locomotion, no study concerned with the dynamics of their quadrupedal suspensory locomotion has been conducted. Brachiating primates have been shown to travel at low mechanical costs using pendular mechanics, but this is associated with considerable dynamic forces exerted onto the support. To test whether sloth locomotion can be described by simple connected pendulum mechanics, we analyzed the dynamics of sloth locomotion with use of a mechanical segment link model. The model integrates the body segment parameters and is driven by kinematic data with both segment parameters and kinematic data obtained from the same sloth individual. No simple pendular mechanics were present. We then used the model to carry out an inverse dynamic analysis. The analysis allowed us to estimate net limb joint torques and substrate reaction forces during the contact phases. Predominant flexing limb joint torque profiles in the shoulder, elbow, hip, and knee are in stark contrast to published dominant extensor torques in the limb joints of pronograde quadrupedal mammals. This dissimilarity likely reflects the inverse orientation of the sloth towards the gravity vector. Nevertheless, scapular pivot and shoulder seem to provide the strongest torque for progression as expected based on unchanged basic kinematic pattern previously described. Our model predicts that sloths actively reduce the dynamical forces and moments that are transmitted onto the support. We conclude that these findings reflect the need to reduce the risk of breaking supports because in this case sloths would likely be unable to react quickly enough to prevent potentially lethal falls. To achieve this, sloths seem to avoid the dynamical consequences of effective pendular mechanics.  相似文献   

14.
On the time allometry of co-ordinated rhythmic movements   总被引:1,自引:0,他引:1  
The focus is the power formulae relating periodic time in terrestrial locomotion and flight to mass and length. The periodic timing of limbs and wings oscillating comfortably in absolute co-ordination is viewed as the characteristic period tau 0 of a system in which the free, undamped oscillatory motion of a point mass m at a distance l from a fixed axis does work against two conservative forces. These forces are in the form of gravity g acting on the point mass and a spring of stiffness k acting at a distance b from the axis. The system's characteristic period can be expressed most simply as: tau 0 = 2 pi [ml2/(mlg + kb2)]1/2. In the biological instantiation of this hybrid mass-spring/simple pendulum system, muscular and other tissues function as the spring that elastically stores and releases mechanical energy. Regular oscillations are brought about and sustained by a muscular driving force that ordinarily is close to resonance. The resultant dynamical regime--basically, raising and lowering a mass at regular intervals with respect to gravity--is referred to as the pendular clocking mode of movement organization. The mode is investigated comfortably at a common period and a fixed phase. In absolute co-ordination, two wrist-pendulum systems can be interpreted physically as a virtual single system. The evidence suggests that the scalings of the periodic times of such systems to mass and to length follow directly from the dynamical properties inherent in the resonance equation of the pendular clocking mode. Recourse to biological constants to rationalize the time scale is unnecessary. Experiments on human wrist-pendular activity and detailed analyses of the mass and length dependencies of the locomotory cycle times of quadrupeds, large birds, small passerines, hummingbirds, and insects are performed with respect to the dynamical properties predicted for systems in the pendular clocking mode. The major conclusion is that all the time scales of terrestrial in locomotory time allometries follow systematically from differences in the length scale and differences in the relation of mass to length.  相似文献   

15.
ABSTRACT. The coelomic gregarine Diplauxis hatti exhibits a unique adaptation of its life cycle to its polychaete host Perinereis cultrifera. Experimental and ultrastructural observations on natural populations from the English Channel showed that release of parasite spores is concomitant with the polychaete spawning. As the development of P. cultrifera is direct, the notochete larva ingest parts of the jelly coat covered with numerous sporocysts of D. hatti during hatching. Transepithelial migration of the sporozoites takes place in the gut of three‐ or four‐segment notochete larvae and syzygies of about 20 μm are observed in the coelom. Growth of these young syzygies is slow: after 18–24 mo they reach only 60–70 μm. They exhibit active pendular movements. In the English Channel, female and male gametogenesis of P. cultrifera begins at 19 mo and 2 yr, respectively; the somatic transformations (epitoky) in the last 4 mo of their 3‐year life. During epitoky, the syzygies undergo an impressive growth and reach 700–800 μm within a few weeks. A shift from pendular to active peristaltic motility is observed when the syzygies reach 200–250 μm. When gamogony occurs, syncytial nuclear divisions are initiated and cellularization produces hundred to thousands of male and female gametes of similar size. The male gametes exhibit a flagellum with 3+0 axoneme. The mixing of the gametes (“danse des gametes”) and fertilization are observed during 4–5 h. Zygotes differentiate sporoblasts with eight sporozoites. The sporozoites exhibit the canonical structure of Apicomplexa, a polarized cell with micronemes and rhoptries.  相似文献   

16.
Evoked, motor and final potentials and some other EEG phenomena are suggested as additional components accompanying movements, external stimuli, imagination etc. Obviously, the EEG reactions are not restricted to them. On the basis of the method of synchronic averaging a way for detecting the amplitude-frequency modulation (AFM) related to the repeated movements is proposed. This method permitted to reliably single out the EEG effects which sometimes were detected by visual analysis. As the experiments showed the depth of AFM EEG accompanying the movements was about 3-6% (in this case spontaneous AFM plays the role of noise and equals 50% or more). Relations between changes in AFM for EEG recorded from various points, as well as for EEG rhythms were investigated.  相似文献   

17.
A syntactic technique is described for the recognition of saccadic eye movements to distinguish normal saccades from those distorted by brain stem lesions. A digitalized eye movement signal is transformed into a sequence of symbols. Eye movements are then found from this sequence by using a parser. This recognition method appropriately enlarged could be applied as a classifier of saccades to aid in diagnosis  相似文献   

18.
Animals use both pendular and elastic mechanisms to minimize energy expenditure during terrestrial locomotion. Elastic gaits can be either bilaterally symmetric (e.g. run and trot) or asymmetric (e.g. skip, canter and gallop), yet only symmetric pendular gaits (e.g. walk) are observed in nature. Does minimizing metabolic and mechanical power constrain pendular gaits to temporal symmetry? We measured rates of metabolic energy expenditure and calculated mechanical power production while healthy humans walked symmetrically and asymmetrically at a range of step and stride times. We found that walking with a 42 per cent step time asymmetry required 80 per cent (2.5 W kg−1) more metabolic power than preferred symmetric gait. Positive mechanical power production increased by 64 per cent (approx. 0.24 W kg−1), paralleling the increases we observed in metabolic power. We found that when walking asymmetrically, subjects absorbed more power during double support than during symmetric walking and compensated by increasing power production during single support. Overall, we identify inherent metabolic and mechanical costs to gait asymmetry and find that symmetry is optimal in healthy human walking.  相似文献   

19.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy.  相似文献   

20.
Summary A discussion is given of considerations involved in forming a frequency spectrum of a signal such as human fixation eye movements, in which an impulsive signal (saccadic movements) and a noise-like signal (tremor movements) are present together. A method is outlined which enables the spectrum of each component to be determined. Results are presented of human eye movement frequency spectra and it is shown that the tremor movements alone are adequate to prevent the fading of vision under conditions of retinal image stabilisation.An interpretation of the observed frequency spectra is given in terms of a model, which assumes that the dynamics of the eye muscle system are linear and that the active state input producing tremor has a flat frequency spectrum. From this it is deduced that the eye behaves as an overdamped second order system with time constants of 0.002 and 0.02 seconds. The active state input involved in production of an involuntary saccade is shown to consist of an impulse function with exponential rise and decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号