首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The obligate intracellular bacterium Rickettsia prowazekii has recently been shown to transport the essential metabolite S-adenosylmethionine (SAM). The existence of such a transporter would suggest that the metK gene, coding for the enzyme that synthesizes SAM, is unnecessary for rickettsial growth. Genome sequencing has revealed that this is the case for the metK genes of the spotted fever group and the Madrid E strain of R. prowazekii, which contain recognizable inactivating mutations. However, several strains of the typhus group rickettsiae possess metK genes lacking obvious mutations. In order to determine if these genes code for a product that retains MAT function, an Escherichia coli metK deletion mutant was constructed in which individual rickettsial metK genes were tested for the ability to complement the methionine adenosyltransferase deficiency. Both the R. prowazekii Breinl and R. typhi Wilmington metK genes complemented at a level comparable to that of an E. coli metK control, demonstrating that the typhus group rickettsiae have the capability of synthesizing as well as transporting SAM. However, the appearance of mutations that affect the function of the metK gene products (a stop codon in the Madrid E strain and a 6-bp deletion in the Breinl strain) provides experimental support for the hypothesis that these typhus group genes, like the more degenerate spotted fever group orthologs, are in the process of gene degradation.  相似文献   

4.
5.
Deoxycytosine methylase (Dcm) enzyme activity causes mutagenesis in vitro either directly by enzyme-induced deamination of cytosine to uracil in the absence of the methyl donor, S-adenosylmethionine (SAM), or indirectly through spontaneous deamination of [5-methyl]cytosine to thymine. Using a Lac reversion assay, we investigated the contribution of the first mechanism to Dcm mutagenesis in vivo by lowering the levels of SAM. Escherichia coli SAM levels were lowered by reducing SAM synthetase activity via the introduction of a metK84 allele or by hydrolyzing SAM using the bacteriophage T3 SAM hydrolase. The metK84 strains exhibited increased C-to-T mutagenesis. Expression of the T3 SAM hydrolase gene, under the control of the arabinose-inducible P(BAD) promoter, effectively reduced Dcm-mediated genomic DNA methylation. However, increased mutagenesis was not observed until extremely high arabinose concentrations were used, and genome methylation at Dcm sites was negligible.  相似文献   

6.
7.
8.
An Escherichia coli metK mutant, designated metK110, was isolated among spontaneous ethionine-resistant organisms selected at 42 degrees C. The S-adenosylmethionine synthetase activity of this mutant was present at lower levels than in the corresponding wild-type strain and was more labile than the wild-type enzyme when heated or dialyzed. A mixture of mutant and wild-type enzyme preparations had an activity equal to the sum of the component activities. These facts strongly suggest that the mutated gene in this strain is the structural gene for this enzyme. Genetic mapping experiments placed the metK110 mutation near or at the site of other known metK mutants (i.e., 63 min), confirming its designation as a metK mutant. A revised gene order has been established for this region, i.e., metC glc speC metK speB serA.  相似文献   

9.
10.
11.
We have identified the S(MK) box as a conserved RNA motif in the 5' untranslated leader region of metK (SAM synthetase) genes in lactic acid bacteria, including Enterococcus, Streptococcus and Lactococcus species. This RNA element bound SAM in vitro, and binding of SAM caused an RNA structural rearrangement that resulted in sequestration of the Shine-Dalgarno (SD) sequence. Mutations that disrupted pairing between the SD region and a sequence complementary to the SD blocked SAM binding, whereas compensatory mutations that restored pairing restored SAM binding. The Enterococcus faecalis S(MK) box conferred translational repression of a lacZ reporter when cells were grown under conditions where SAM pools are elevated, and mutations that blocked SAM binding resulted in loss of repression, demonstrating that the S(MK) box is functional in vivo. The S(MK) box therefore represents a new SAM-binding riboswitch distinct from the previously identified S box RNAs.  相似文献   

12.
The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.  相似文献   

13.
A metK gene encoding S-adenosyl-L-methionine synthetase was cloned from the non-Streptomyces actinomycetes, Actinoplanes teichomyceticus ATCC31121. In order to evaluate the effect of the metK expression on antibiotic production in actinomycetes, an expression vector harboring the metK gene was constructed and introduced into Streptomyces lividans TK24 and A. teichomyceticus, and the antibiotic production of the exconjugants was assessed. As a result, it was determined that the expression of metK induced 17-fold and 2.2-fold increases in actinorhodin production from S. lividans TK24 and teicoplanin production from A. teichomyceticus, respectively, compared with the control strains.  相似文献   

14.
Genetic characterization of the metK locus in Escherichia coli K-12.   总被引:10,自引:8,他引:2       下载免费PDF全文
Three independently isolated metK mutants have been shown to have leisions lying between speB and glc near 57 min on the Escherichia coli chromosome. Two deletions result in a lack of the metC gene product but neither extends into the metK glc region. The three metK mutations are recessive to the wild-type allele carried on the KLF16 episome.  相似文献   

15.
Methionine is an important amino acid which acts not only as a substrate for protein elongation but also as the initiator of protein synthesis. The genes of the met regulon, which consists of 10 biosynthetic genes (metA, metB, metC, metE, metF, metH, metK, metL, metQ, and metX), two regulatory genes (metJ and metR), and the methionyl tRNA synthetase gene (metG), are scattered throughout the chromosome. The only linked genes are metK and metX at 63.6 min, metE and metR at 86.3 min, and the metJBLF gene cluster at 89 min. metBL form the only met operon.  相似文献   

16.
To study reductive evolutionary processes in bacterial genomes, we examine sequences in the Rickettsia genomes which are unconstrained by selection and evolve as pseudogenes, one of which is the metK gene, which codes for AdoMet synthetase. Here, we sequenced the metK gene and three surrounding genes in eight different species of the genus Rickettsia. The metK gene was found to contain a high incidence of deletions in six lineages, while the three genes in its surroundings were functionally conserved in all eight lineages. A more drastic example of gene degradation was identified in the metK downstream region, which contained an open reading frame in Rickettsia felis. Remnants of this open reading frame could be reconstructed in five additional species by eliminating sites of frameshift mutations and termination codons. A detailed examination of the two reconstructed genes revealed that deletions strongly predominate over insertions and that there is a strong transition bias for point mutations which is coupled to an excess of GC-to-AT substitutions. Since the molecular evolution of these inactive genes should reflect the rates and patterns of neutral mutations, our results strongly suggest that there is a high spontaneous rate of deletions as well as a strong mutation bias toward AT pairs in the Rickettsia genomes. This may explain the low genomic G + C content (29%), the small genome size (1.1 Mb), and the high noncoding content (24%), as well as the presence of several pseudogenes in the Rickettsia prowazekii genome.  相似文献   

17.
Escherichia coli can not synthesize methionine from 5-methylthioribose (MTR) but instead exports this sulfur-containing, energy-rich molecule into the surrounding medium. Transforming E. coli with plasmids that direct expression of the cloned coliphage T3 S-adenosyl-L-methionine (SAM) hydrolase (SAMase) induces the met regulon by cleaving the SAM co-repressor to form 5'-methylthioadenosine, which is then cleaved to produce MTR. To test the effect of in vivo SAMase activity on MTR production and its fate, cultures were incubated in the presence of [35S]methionine and [methyl-3H]methionine. Cells with SAMase activity produced significantly enhanced levels (up to 40-fold in some trials) of extracellular MTR -- the only radiolabeled compound released in significant amounts -- when compared with controls. SAM synthetase (metK) mutants transformed with SAMase expression vectors did not show this increase, verifying the path through SAM as the sole route to MTR production. SAMase expression had little or no effect on intracellular MTR pools, levels of radiolabeled macromolecules, or the transfer of methyl groups to compounds that could be precipitated by trichloroacetic acid. Thus, MTR appears to be a dead-end metabolite in E. coli, begging questions about how this has evolved, the mechanism of MTR export for the cell, and whether the release of MTR is important for some other activity.  相似文献   

18.
Most prototrophic strains of Escherichia coli become restricted for methionine at 44 degrees C. A mutant strain (RG62 metK) in which the level of S-adenosylmethionine synthetase activity is only 10 to 20% of normal shows constitutive expression of one of the heat shock proteins, the lysU gene product, lysyl-tRNA synthetase form II, at 37 degrees C. These findings suggested a possible linkage between methionine metabolism and heat shock. We examined the induction of heat shock polypeptides in strain RG62 (metK) and in its parent, RG (metK+), from which it was derived by spontaneous mutation. Exponential-phase cultures of the two strains were pulse-labeled with [3H]leucine shortly after a shift from 37 to 44 degrees C, and the total cellular polypeptides were examined by two-dimensional electrophoresis. The results confirmed the constitutive production of the lysU gene product previously reported for strain RG62, but also revealed that the induction of 2 of the 17 heat shock polypeptides, C14.7 and G13.5, was markedly depressed. Otherwise the heat shock induction pattern was similar in timing and magnitude in the two strains. Transformation of the mutant strain with a plasmid, pK8, containing the metK coding sequence and promoter region as a 1.8-kilobase insert into pBR322 restored normal induction of C14.7 and G13.5, but did not prevent constitutive expression of the lysU gene product in the medium required for growth of this strain. The three heat shock polypeptides abnormally controlled in strain RG62 are the three polypeptides which are not induced when rapid synthesis of the htpR gene product is induced by isopropyl-beta-D-thiogalactopyranoside at 28 degree C (R. A. VanBogelen, M. A. Acton, and F. C. Neidhardt, Genes Dev. 1:525-531, 1987). We postulate that induction of these three polypeptides involves metabolic signals in addition to the synthesis of the htpR gene product and that strain RG62 (metK) fails to produce the signals involved in induction of C14.7 and G13.5 on a shift-up in temperature and produces the signal related to lysU induction even at 37 degree C.  相似文献   

19.
20.
The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP: L -methionine S-adenosyltransferase). In Escherichia coli and Sal-monella typhimunum numerous studies have located a structural gene (metK) for this enzyme at 63min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E. coli by DNA hybridization experiments with metK as the probe; we denote this gene as metX. The metX gene is located adjacent to metK with the gene order speA metK metX speC. The metK and metX genes are separated by ~0.8kb. The metK and the metX genes are oriented convergently as indicated by DNA hybridization experiments using sequences from the 5′ and 3′ ends of metK. The metK gene product is detected immunochemically only in cells growing in minimal media, whereas the metX gene product is detected immunochemically in cells grown in rich media at all growth phases and in stationary phase in minimal media. Mutants in metK or metX were obtained by insertion of a kanamycin resistance element into the coding region of the cloned metK gene (metK:: kan), followed by use of homologous recombination to disrupt the chromosomal metK or metX gene. The metK::kan mutant thus prepared does not grow on minimal media but does grow normally on rich media, while the corresponding metX::kan mutant does not grow on rich media although it grows normally on minimal media. These results indicate that metK expression is essential for growth of E. coli on minimal media and metX expression is essential for growth on rich media. Our results demonstrate that Ado Met synthetase has an essential cellular and/or metabolic function. Furthermore, the growth phenotypes, as well as immunochemical studies, demonstrate that the two genes that encode S-adenosylmethionine synthetase isozymes are differentially regulated. The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号