首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

3.
Exposure of isolated Xenopus animal pole ectoderm to the XTC mesoderm-inducing factor (XTC-MIF) causes the tissue to undergo gastrulation-like movements. In this paper, we take advantage of this observation to investigate the control of various aspects of gastrulation in Xenopus. Blastomeres derived from induced animal pole regions are able, like marginal zone cells, but unlike control animal pole blastomeres, to spread and migrate on a fibronectin-coated surface. Dispersed animal pole cells are also able to respond to XTC-MIF in this way; this is one of the few mesoderm-specific responses to induction that has been observed in single cells. The ability of induced animal pole cells to spread on fibronectin is abolished by the peptide GRGDSP. However, the elongation of intact explants is unaffected by this peptide. This may indicate that fibronectin-mediated cell migration is not required for convergent extension. We have investigated the molecular basis of XTC-MIF-induced gastrulation-like movements by measuring rates of synthesis of fibronectin and of the integrin beta 1 chain in induced and control explants. No significant differences were observed, and this suggests that gastrulation is not initiated simply by control of synthesis of these molecules. In future work, we intend to investigate synthesis of other integrin subunits and to examine possible post-translational modifications to fibronectin and the integrins.  相似文献   

4.
The region with the potential to form the heart has traditionally been called the heart field. This region can be approximated by, but is not identical to, the expression domain of the early cardiac gene Nkx2.5. The region expressing Nkx2.5 does not change in size, although there are major shape changes and a subdivision of the region into non-myogenic and myogenic lineages. Using a variety of embryo manipulations, we have sought to determine whether cellular interactions could change the size of the initial Nkx2.5-expressing region and thus change the size of the heart. We have shown that if the heart is isolated from the dorsal half of the embryo, the volume of tissue expressing myocardial differentiation markers increases, indicating that signals restricting the size of the heart come from the dorsal side. Despite the change in myocardial volume, the non-myogenic heart lineages are still present. The ability of dorsal tissues to restrict the size of the heart is further demonstrated by fusing two Xenopus embryos shortly after gastrulation, generating twinned embryos where the heart of one embryo would develop adjacent to different tissues of the second embryo. The final size of the differentiated heart was markedly reduced if it developed in close proximity to the dorso-anterior surface of the head but not if it developed adjacent to the flank or belly. In all cases, the manipulations that restricted the size of the myocardium also restricted the expression of Nkx2.5 and GATA-4, both key regulatory genes in the cardiogenic pathway. These results provide evidence for a model in which signals from dorso-anterior tissues restrict the size of the heart after gastrulation but before neural fold closure.  相似文献   

5.
The combination of Xenopus borealis and X. laevis provides an excellent cell marking system. The potential availability of this system for chimera formation has also been suggested. However, eggs and early embryos of these species differ in size and the fusion of blastomeres of different sizez results in some disturbance in arrangement of blastomeres of a chimera. This disturbance was avoided by use of embryos from X. laevis eggs fertilized with X. borealis sperm, instead of X. borealis embryos. The cells of these hybrids could also be distinguished from the cells of X. laevis.
The fate of animal ventral cells placed in the dorsal region was followed by making a chimera by fusing a right lateral half of an 8-cell X. laevis embryo with that of an 8-cell hybrid embryo. The animal ventral cells in the "dorsal" region were found to become "dorsalized", giving rise to a lateral half of dorsal axial structures. This observation explains a previous finding that the replacement of dorsal cells by ventral ones had no effect on embryogenesis in a composite embryo.  相似文献   

6.
In the amphibian Xenopus laevis, suprachiasmatic melanotrope-inhibiting neurons (SMINs) play an important role in the regulation of the background adaptation process. In this study, we investigated the innervation of the SMINs at the light- and electron- microscopical level. Immunocytochemistry in combination with confocal laser scanning microscopy revealed co-existence of neuropeptide Y (NPY) and synaptobrevin in spots in the direct vicinity of the SMINs, suggesting the existence of NPY-containing synapses on these cells. At the ultrastructural level, the SMINs showed a high degree of plasticity, containing more electron-dense vesicles and a larger extent of RER in white- than in black-adapted animals. In black-adapted animals, symmetric synapses (Gray type II) were observed on the soma of the SMINs, suggesting an inhibitory input to these cells. The synaptic profiles contained electron-lucent and electron-dense vesicles, indicating the involvement of both a classical neurotransmitter and a neuropeptide (possibly NPY) in this input. In white-adapted animals, synapses were only found at some distance from the SMIN somata. Our findings indicate a striking plasticity of the innervation of the SMINs in relation to background adaptation and support the hypothesis that the SMINs are innervated by NPY-containing interneurons that inhibit SMIN activity in black-adapted animals.  相似文献   

7.
We have reported that the animal pole cells stimulate the ventral mesoderm of early gastrula Xenopus embryo (stage 10) to differentiate into erythrocytes. To determine the molecular mechanism(s) involved in the stimulatory effect of the animal pole, ventral mesoderm explants were cultured in the presence of various defined cellular factors. In this study, we report that murine stem cell factor (SCF) stimulates globin expression at the optimum dose of 10 ng/ml. Globin expression was observed from the ventral mesoderm explants treated with SCF, but not from the dorsal mesoderm and the animal pole explants. Morphological studies of the ventral mesoderm treated with SCF showed that only a certain population of the ventral mesoderm differentiates into erythrocytes. On the other hand, coculture of ventral mesoderm and animal pole revealed the differentiation of the entire structures into mesenchyme, blood cells, and the overlying epidermis. These data suggest that SCF may play a role in the stimulation of erythrocytic differentiation, but the effect of the animal pole cells cannot be replaced with that of SCF.  相似文献   

8.
9.
Summary UsingXenopus blastulae of stage 9, recombinates were made of the animal, ectodermal cap (zones I.II) and the vegetative, endodermal yolk mass (zone IV) (see Fig. 1). For the experiments either the entire ectodermal cap (A.B), the single outer layer (A) or the stratified inner layer (B) were used.A comparison of the quantitative composition of the recombinates and the corresponding isolates—on the basis of absolute values expressed in units of section surface area—demonstrates unequivocally that the entire mesoderm originates from the ectodermal half of the anuran egg under an inductive influence emanating from the endodermal half. This holds for recombinates of the vegetative yolk mass with the entire ectodermal cap as well as with its outer or inner layer alone.A comparison of mesoderm formation in recombinates of the entire ectodermal cap or with its outer or inner layer with the vegetative yolk mass shows that in all cases mesoderm formation is proportional to the amount of ectoderm available. In addition, the outer layer of the ectoderm is partially endodermized which may be brought in relation with the fact that in normal development an endodermal lining extends upwards from the endodermal mass, which, among other things, covers the prechordal mesoderm on the outside.The outer layer of the ectoderm has markedly lower neural competence than the inner layer, from which in normal development the bulk of the neural material arises.  相似文献   

10.
11.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

12.
13.
The tissue and developmental distribution of the various myosin subunits has been examined in bovine cardiac muscle. Electrophoretic analysis shows that a myosin light chain found in fetal but not in adult ventricular myosin is very similar and possibly identical to the light chain found in fetal or adult atrial and adult Purkinje fiber myosins. This light chain comigrates on two-dimensional gels with the bovine skeletal muscle embryonic light chain. Thus, this protein appears to be expressed only at early developmental stages in some tissues (cardiac ventricles, skeletal muscle) but at all stages in others (cardiac atria). The heavy chains of these myosins have been examined by one- and two-dimensional polypeptide mapping. The ventricular and Purkinje fiber heavy chains are indistinguishable. They are, however, different from the heavy chain found in cultured skeletal muscle myotubes, in contrast to the situation concerning the embryonic/atrial light chain.  相似文献   

14.
Summary We have used interspecific grafts between Xenopus borealis and Xenopus laevis to study the signalling system that produces tail mesoderm. Early gastrula ectoderm grafted into the posterior neural plate region of neurulae responds to a mesodermal inducing signal in this region and forms mainly tail somites; this signal persists until at least the early tail bud stage. Ventral ectoderm grafted into the posterior neural plate loses its competence to respond to this signal after stage 10 1/2. We have established the specification of anterior and posterior neural plate ectoderm. In ectodermal sandwiches or when grafted into unusual positions, anterior regions gave rise to mainly nervous system and posterior regions to large amounts of muscle, together with some nervous system. Thus it was impossible to assess the competence of posterior neural plate ectoderm to form further mesoderm and hence to establish if mesodermal induction continues during neurulation in unmanipulated embryos.  相似文献   

15.
During gastrulation, the mesoderm spreads out between ectoderm and endoderm to form a mesenchymal cell layer. Surprisingly the underlying principles of mesoderm layer formation are very similar in evolutionarily distant species like the fruit fly, Drosophila melanogaster, and the frog, Xenopus laevis, in which the molecular and the cellular basis of mesoderm layer formation have been extensively studied. Complementary expression of growth factors in the ectoderm and their receptors in the mesoderm act to orient cellular protrusive activities and direct cell movement, leading to radial cell intercalation and the spreading of the mesoderm layer. This mechanism is contrasted with generic physical mechanisms of tissue spreading that consider the adhesive and physical properties of the cells and tissues. Both mechanisms need to be integrated to orchestrate mesenchymal morphogenesis.  相似文献   

16.
Mesoderm induction by the mesoderm of Xenopus neurulae   总被引:1,自引:0,他引:1  
Combinations were made between explants of mesoderm from the archenteron roof of early Xenopus neurulae and explants of ectoderm from mid-blastulae. In each combination one component was labeled with the fluorescent lineage label RDA (rhodamine-dextran-amine). Frequent and large mesoderm inductions, consisting mainly of muscle, were found where the presomite plate was used as the inducer. Less frequent and smaller mesoderm inductions were found when notochord was used as the inducer. We conclude that induced mesoderm can itself be active as a mesoderm inducing tissue. If this capability is acquired in the blastula then it follows that mesoderm induction must propagate from cell to cell and its spread be antagonized by some other factor.  相似文献   

17.
To study the regulation of the dorsal axial structures, we removed the right animal dorsal and the right vegetal dorsal cells from an 8-cell embryo of Xenopus laevis .
Most of the right dorsal cell-deficient embryos developed to normally proportioned tailbud embryos. No detectable delay was observed in their development. Examinations of serial sections revealed that they had restored bilateral symmetry. The cell numbers of the somite and the notochord had recovered to more than 90% and 70%, respectively, those of controls. Since the right dorsal cell-deficient embryo retained roughly three-quarters of the prospective region for the somites and half of that for the notochord, respectively, the cell number was more than that expected from the remaining prospective regions. Cell lineage analyses showed that progeny of the right ventral cells had formed almost all of the right dorsal axial structures, which are normally formed by the progeny of the right dorsal cells. However, almost all the notochord cells had been derived from the remaining left dorsal cells.
These results indicate that some quantitative aspects of regulation as expressed in terms of the cell number were different between the two tissues examined.  相似文献   

18.
To follow the subsequent history of grafted tissue in experiments designed to study regulation and commitment in the amphibian neural plate, previous workers have relied on graft scars, vital dyes applied externally to cells, or xenoplastic grafts. Each of these methods has been criticized on the grounds that they do not indicate unambiguously the origins of individual cells within the operated host. To overcome these difficulties, homoplastic, genetically marked embryonic grafts were taken from the prospective spinal neuroectoderm of triploid and tetraploid Xenopus laevis frogs and transplanted to presumptive eye and prosencephalic regions of the neural plate of diploid X. laevis embryos. Orthotopic presumptive eye grafts also were done. Marked cells were scored in section either by nucleolar number or computerized nuclear size analysis. Of 28 heterotopically grafted embryos that survived to stage 41, when the retina has differentiated, prospective spinal cord neuroectoderm in eight animals gave rise to cell types unique to the eye. The remaining 20 survivors appeared to be mosaic. These results substantiate claims of regulation in the neural plate and extend these observations to the level of individual cell types, a level of resolution not previously obtained in other studies.  相似文献   

19.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

20.
The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号