首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between seed germination and ecological niche is determined by matching germination characteristics with environmental features. In this study, we selected tree species occurring in the largest savanna wetland in South America – the Pantanal. Very few species are endemic or exclusively found in savanna wetlands, and the majority of tree species occurring in the Pantanal are also found in the neighbouring Brazilian Cerrado, a drier vegetation type that does not flood. We investigated the relationship between germination characteristics and occurrence of savanna trees in wetlands testing the hypothesis that such seeds are tolerant to flooding. We also addressed the question of whether seed tolerance to flood, assessed by survival analysis, explains tree distribution along a gradient of flooding intensity. In this flooding gradient, widely distributed species are those that occur in areas subjected to low as well as to high flooding intensity whereas restricted distributed species are those that occur only in areas subjected to a low level of flood. Seeds from tree species occurring in areas subjected to different flooding intensities were collected. Seed tolerance and germination during and after both one and two months of simulated flood were evaluated. Our results show that seeds of most of the studied savanna species tolerated submergence, which helps to explain their occurrence and wide distribution in wetlands. Nevertheless, germination behaviour checked by survival functions (i.e. how germination is distributed over time) partially explained tree species distribution along a flooding gradient. We conclude that seed tolerance to flooding is one of the components of the regeneration niche that determines tree occurrence and distribution at the regional scale, from savanna to wetland, but not at a local scale along a flooding gradient.  相似文献   

2.
Abstract. Prosopis glandulosa var. glandulosa has played a central role in the encroachment of woody plants in southern Texas, grasslands and savannas by acting as a nurse plant for various shrubs that establish in its understory. To test for continued facilitation of established understory shrubs by Prosopis and to determine if established shrubs compete with the Prosopis nucleus, selective removal experiments were conducted and monitored over a 2–5 yr period. Short-term (1–3 days) and long-term (2 yr) growth and physiological activities (midday net photosynthesis and leaf/shoot water potential) of two common understory shrubs, Zanthoxylum fagara and Berberis trifoliolata, growing with Prosopis, were generally comparable to those of individuals occurring in clusters where Prosopis was removed. Shrubs growing with an intact Prosopis occasionally showed significantly higher leaf-[N] and pre-dawn water potentials than those in clusters lacking a live Prosopis, especially under drought conditions; however, these differences did not translate into greater midday leaf gas exchange or shoot growth. By comparison, removal of understory shrubs elicited large increases in Prosopis net photosynthesis, annual trunk growth in each of the 5 yr monitored, and seed pod production in three of the four years monitored. Seven of 26 Prosopis plants in experimental clusters with an intact understory died over a 5-yr period, compared to only two of the 26 plants in clusters with the cleared understory. Results indicate that (1) the founding overstory Prosopis plant may continue to facilitate understory shrubs following their establishment, but these beneficial effects appear to be small and transitory, and (2) the understory shrubs have a pronounced negative effect on Prosopis, such that competition between overstory and understory woody plants is strongly asymmetrical. These findings suggest that understory shrubs will likely persist despite changes in microclimate and soils (potentially) that occur after the Prosopis plant, which facilitated their ingress or establishment, has died. Soil resource depletion by shallow-rooted understory shrubs appears to be a primary factor contributing to the demise of the deeply rooted, overstory Prosopis plants, especially on upland sites with duplex soils where below-ground competition is accentuated.  相似文献   

3.
Long-term climate–growth relationships, were examined in tree rings of four co-occurring tree species from semi-arid Acacia savanna woodlands in Ethiopia. The main purpose of the study was to prove the presence of annual tree rings, evaluate the relationship between radial growth and climate parameters, and evaluate the association of El Niño and drought years in Ethiopia. The results showed that all species studied form distinct growth boundaries, though differences in distinctiveness were revealed among the species. Tree rings of the evergreen Balanites aegyptiaca were separated by vessels surrounding a thin parenchyma band and the growth boundary of the deciduous acacias was characterized by thin parenchyma bands. The mean annual diameter increment ranged from 3.6 to 5.0 mm. Acacia senegal and Acacia seyal showed more enhanced growth than Acacia tortilis and B. aegyptiaca. High positive correlations were found between the tree-ring width chronologies and precipitation data, and all species showed similar response to external climate forcing, which supports the formation of one tree-ring per year. Strong declines in tree-ring width correlated remarkably well with past El Niño Southern Oscillation (ENSO) events and drought/famine periods in Ethiopia. Spectral analysis of the master tree-ring chronology indicated occurrences of periodic drought events, which fall within the spectral peak equivalent to 2–8 years. Our results proved the strong linkage between tree-ring chronologies and climate, which sheds light on the potential of dendrochronological studies developing in Ethiopia. The outcome of this study has important implications for paleoclimatic reconstructions and in restoration of degraded lands.  相似文献   

4.
The effect of soil temperature on the net photosynthetic rate was studied by the method of multifactor analysis at early growth stages of narrow-leaved lupine (Lupinus angustifolius L.), white cabbage (Brassica capitata Lisg.), spring wheat (Triticum aestivum L.), cucumber (Cucumis sativus L.), tomato (Lycopersicon esculentum Mill.), and cotton (Gossypium hirsutum L.) plant species and cultivars contrasting in their heat demand. The optimum level of the net photosynthetic rate was observed in a wide range of soil and air temperatures, from cold- to heat-hardening temperatures, irrespective of the sign of the temperature gradient, whereas the magnitude and sign of the temperature gradient favorable for the highest potential net photosynthetic rate were species- and cultivar-specific and were not related to the cold tolerance of a species or cultivar.  相似文献   

5.

Aims

The Birch effect is a pulse in soil C and N mineralization caused by the wetting of dry soils, but the role of the soil moisture increment (ΔSWC) is still poorly understood. We quantified the relationship between ΔSWC and the Birch effect, and its interactions with pre-wetting soil moisture (preSWC) and substrate supply.

Methods

Two soils (clay loam and sandy loam) under a Pinus halepensis forest were subjected to rewetting in laboratory treatments combining different ΔSWC and preSWC values, with or without additional substrate (5 mg g-1 P. halepensis needles). Respiration flush (ΔR), changes in microbial biomass C (MBC) and net N mineralization (NMIN) were measured.

Results

Overall, we found a relationship with the form: ΔR?=?a ΔSWC?+?b, where the slope (a) was significant only when pre-wetting water potential was below a threshold value in the range of ?100 to ?1,200 kPa. However, the threshold alone does not fully describe the role of preSWC in slope variability. Substrate addition modified the ΔSWC sensitivity of Birch effect, enhancing it in the clay loam and suppressing it in the sandy loam.

Conclusions

The intensity of the wetting is a dominant factor regulating Birch effect, and ΔSWC is useful for its quantification.  相似文献   

6.
Many ecosystems exhibit threshold behaviour, where periods of relative stability are punctuated by rapid transitions between alternate stable states when an ecological threshold, or tipping point, is reached. This is of concern in grass-dominated habitats, many of which appear to be on the point of conversion to more wooded vegetation assemblages. However, changes in grass-dominated ecosystems are often difficult to interpret, because it is not always clear whether grasslands are ancient or are anthropogenically derived from past deforestation. As a result, the conservation, maintenance and restoration of ancient grasslands are sometimes neglected.In this study, the history of vegetation change in the savannas of the Hluhluwe-iMfolozi Park, KwaZulu-Natal, South Africa, are investigated by analysing stable carbon isotopes (δ13C) from soil profiles. Without exception, the data show that C3 dominated thicket, forest, and densely wooded savanna now occur on sites that were previously C4 grassland or open savanna. Although the drivers of this change are not clear, there is potential for management intervention because tree density can be manipulated through fire, a natural part of this dynamic landscape. The study identified two sites which are at a threshold between C4 and C3 dominance, and highlighted them as priorities for conservation management intervention.  相似文献   

7.
8.
A buffering mechanism in co-evolutionary relationships could be to display phenotypic plasticity in response to environmental changes. In the nursery pollination mutualism between the European globeflower and its exclusive fly pollinators, adults feed and mate in flowers, and larvae develop feeding on seeds. Flower number and size influence fitness for both partners, and large flowers attract more flies. We tested floral plasticity in plants from two contrasting environments: a high-altitude heath and low- and intermediate-altitude meadow forests. High-altitude plants have single flowers, while meadow-forest plants sometimes have multiple flowers. Plants were grown for 3 years in a garden and supplied with eight times more nutrients than available in natural soils, given to controls. During the experiment, over 90% of all plants with excess nutrients flowered, while in controls, 40% (high-altitude) to 75–78% (meadow-forest) plants flowered. Excess nutrients stimulated 30% larger flowers, and in meadow-forest plants flower number increased 4.5–5 times. Flower number was only doubled in high-altitude plants. High-altitude plants displayed less plasticity, and possibly, a different genetic strategy involving meristem limitation.  相似文献   

9.
《Autophagy》2013,9(12):2173-2174
Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental unit and the maternal blood, and is therefore a critical physical and immunological barrier to restrict the spread of pathogens into the fetal microenvironment. Recently, we found that primary human placental trophoblast (PHT) cells are highly resistant to infection by diverse viruses. In this study, we also found that conditioned medium from PHT cell cultures transferred viral resistance to nonplacental recipient cells, suggesting that a component secreted by trophoblasts and present within the conditioned medium is responsible for this antiviral effect. We found that specific miRNAs from a unique primate- and placental-specific locus—the C19MC (chromosome 19 miRNA cluster)—are packaged within exosomes produced by PHT cells and confer viral resistance in nonplacental recipient cells. In addition to conveying viral resistance, we found that PHT-derived exosomes and select miRNA members of the C19MC family strongly induce autophagy, which is involved in recipient cell viral resistance. Our findings establish an exciting and novel mechanism by which placental trophoblasts exploit exosome-dependent transfer of placental-specific miRNAs to influence autophagic induction and antiviral immunity at the maternal–fetal interface.  相似文献   

10.
This paper characterizes predator–prey interactions amongst African mammals from C4 savanna environments using stable carbon and nitrogen isotope proxies for diet. Stable carbon (δ13C) and nitrogen (δ15N) isotope data from hair and faeces of large African mammal carnivores, and herbivores as potential prey, are presented for a diverse range of taxa. Carbon-isotope data imply that most carnivores from the “lowveld” savanna of South Africa form part of C4 grass-based food webs. Nitrogen isotope data show clear differences between trophic levels, although it appears that the magnitude of these differences varies between predators feeding on invertebrates and vertebrates, respectively. Whilst the number of carnivore samples for which data are available is relatively few, and data for prey are restricted mainly to large ungulate herbivores, results clearly demonstrate the potential for future applications of this technique to predator–prey food webs in African savannas. In tandem with traditional approaches, stable isotopes can help elucidate patterns of predator impacts on prey populations, domestic livestock, and resolving similar food webs in palaeoenvironmental contexts.  相似文献   

11.
Woody plant expansion, particularly eastern red cedar (Juniperus virginiana L.), has been a major threat to Louisiana calcareous prairies. Previous studies have shown that woody plant expansion into grasslands is associated with an increase in soil heterogeneity. We studied the within site spatial variability and among site differences of surface (0–15 cm depth) soil pH, electrical conductivity (EC), and Mehlich III extractable Ca, Mg, K, Fe and Mn from three remnant prairie-forest associations in Winn Parish, Louisiana. The prairie soil was consistently basic (pH > 7.0) and the forest soil was acidic (pH < 7.0) while the transition soil was neutral (pH = 7.0). A nonparametric statistical test for the equality of medians among sites showed the median values of the soil attributes differed (α = 0.05) except for soil Ca and Fe. The similarity in Ca concentration among sites was attributed to the calcareous parent material common to the three sites. Geostatistical analysis showed that spatial dependence was expressed over a range of 20–30 m for most of the soil attributes considered. Semivariogram shapes were similar among sites, suggesting the greater control of soil parent material on the observed spatial soil pattern. Shorter range of variation emerged only for soil pH when soil data from the forest and transition were deleted, indicating the scaling characteristics of soil pH and its susceptibility to plant induced changes. It is concluded that soil pH can be used as an index to determine prairie-forest boundary, and to access the impact of eastern red cedar on these and similar sites derived from calcareous parent material. Further, results from this study can be used for designing future ecological studies within the prairie by taking the soil spatial variability into account.  相似文献   

12.
The effect of tree clumps on soil characteristics was investigated in a humid savanna (Lamto, Côte d'Ivoire). Soil texture and field capacity were not significantly different under tree clumps compared to open grassland. On the other hand, bulk density was lower under tree clumps, likely due to a greater soil fauna activity under the trees. The pH, available phosphorus, cation exchange capacity, total carbon and total nitrogen contents were higher under tree clumps due to greater organic matter input beneath canopies. Potential soil respiration and mineral nitrogen accumulation were also enhanced, indicating a higher potential microbial activity under tree clumps. Soil water content was slightly lower beneath canopies (from July to November only between 0 and 10 cm depth) when soil moisture was above field capacity. During the other months, no significant difference was measured.  相似文献   

13.
The study of interaction networks between plants and pollinators allows us to explore interaction patterns at the community level, detect changes in visit frequency and evaluate the nestedness of the networks. The latter allows rare plant species to be visited by more abundant species of pollinators, potentially allowing community diversity to be maintained, and this approach makes it possible to discern the rewiring (changes in connections) of species when their preferred resource is not available. In this study, the topology, species identity and rewiring were compared between two contrasting sites, one within a conservation area and the other subjected to continuous disturbance. The networks of both sites were significantly nested and shared a high number of common species of both plants and pollinators. However, the sites differed notably in the number of exclusive interactions, suggesting a high percentage of interaction rewiring. The introduced bee species, Apis mellifera, was the most frequent species at both sites and also the most connected in terms of the number of its interactions. This is explained by its generalist foraging characteristics that allow it to form part of the networks’ core group. In general, our results underscore the importance of knowing the identity of the participating species when studying networks, and how connections change between them, as well as the potential effect of habitat destruction and the role of invasive species in the rearrangement of the interactions; all factors that can exert an influence on the functioning of plant–pollinator networks.  相似文献   

14.
We report the discovery of a mutualistic system encompassing prey–predator interactions. A domatium is a small space in a vein axil on the underside of leaves of woody angiosperms. Cinnamomum camphora Linn. has domatia that harbor a microphytophagous eriophyid mite (sp. 1). We previously reported that a predatory mite, Euseius sojaensis (Ehara), depends on this eriophyid mite as food. We revealed that E. sojaensis also preyed upon another eriophyid mite (sp. 2) that induces galls on leaves, and that the mean area of C. camphora leaves with galls was usually less than half that of leaves without galls. We experimentally tested the effect of E. sojaensis on galls, and confirmed that the presence of E. sojaensis reduced gall induction. Therefore, C. camphora, eriophyid mite sp. 1, and E. sojaensis comprise a mutualistic system, in spite of the prey–predator interactions among them. The conventional concept of mutualism does not apply to such prey–predator interactions, so we defined them as systematic mutualism. Here, the system consists of three trophic levels, and individuals that constitute this system benefit from the other species that constitute this system.  相似文献   

15.

Reproductive interference (RI), an interspecific mating interaction that reduces the fitness of at least one of the species involved, can lead to exclusive distributions in closely related species. A hypothesis previously proposed is that RI in plants may occur by ovule usurpation, in which pistils lack interspecific incompatibility and mistakenly accept heterospecific pollen, thereby losing an opportunity for conspecific pollen fertilization. However, few comparative studies have evaluated the consistency of the inferred mechanism within and among individuals and populations. We conducted hand-pollination experiments in six populations of three native Taraxacum species that suffered from different levels of RI from an alien congener, T. officinale, and compared pollen–pistil interactions among populations. We also investigated the interactions for eight individual T. japonicum plants whose response to heterospecific pollen deposition had been previously measured. Our results revealed that pollen tubes often penetrated native ovaries following heterospecific pollination in populations suffering from strong RI, whereas they seldom did in populations suffering from marginal RI. However, the relative frequency of the pollen tube penetration was not significantly related to the strength of alien RI. Not all pistils on an individual plant showed the same pollen receptivity following heterospecific pollination; rather, some accepted and some refused the pollen tubes. The relationship between pollen tube penetration following heterospecific pollination and the strength of the alien RI was also not significant among individuals. Our present results generally support the ovule usurpation hypothesis, but suggest that other factors, such as competition for pollinator services, variation in the effects of heterospecific pollen donors, and condition of the native inflorescences, might also affect the observed RI strength.

  相似文献   

16.
In water-limited environments of the intermountain region of North America, summer precipitation may play a role in the structure and function of aridland communities and ecosystems. This study examined the potential reliance on summer precipitation of two widespread, coexisting woody species in the southwestern United States, Pinus edulis Englmn. (Colorado piñon) and Juniperus osteosperma (Torr) Little (Utah juniper). The current distributions of P. edulis and J. osteosperma are highly suggestive of different dependencies on summer rainfall. We hypothesized that P. edulis was dependent on summer precipitation, utilizing summer precipitation even during extremely dry summers, whereas J. osteosperma was not dependent, using summer precipitation only when amounts were above some minimum threshold. Using sap flux and stable isotopic methods to assess seasonal water sources and water use efficiency, we examined the response of these two species to seasonal variations in moisture at a site located near the northern limits of the North American monsoon. Both sap flux and isotopic results indicated that P. edulis was responsive to summer rain, while J. osteosperma was not. Following summer rain events, sap flux density increased in P. edulis for several days, but not in J. osteosperma. Isotopic evidence indicated that P. edulis took up summer-derived moisture to a greater extent than J. osteosperma. Values of the natural abundance stable isotope ratio of carbon of leaf soluble carbohydrates increased over the summer for P. edulis, indicative of assimilation at higher water use efficiency, but were invariant for J. osteosperma. Our results supported the hypothesis that P. edulis and J. osteosperma are differentially sensitive to summer precipitation and are discussed in the light of potential changes in the seasonality of precipitation associated with climate change.  相似文献   

17.
18.
Heyes  Simon D.  Sinclair  Steve J.  Hoebee  Susan E.  Morgan  John W. 《Plant Ecology》2020,221(7):545-557
Plant Ecology - Land clearing of habitat into smaller, isolated remnants is a major driver of plant and animal extinctions globally. In southeastern Australia, once widespread temperate savannas...  相似文献   

19.
Multiple shoots differentiated from hypocotyl explants of Sesbania bispinosa (Jacq.) W.F. Wight, a leguminous woody shrub, when cultured on Gamborg's basal medium alone or in combination with 6-benzyl aminopurine (10–7–10–4 M). For cotyledonary explants 6-benzyl aminopurine (10–6–10–4 M) was necessary. The shoots rooted when cultured on Gamborg's basal medium containing indole-3-butyric acid (10-5 M). Plantlets thus formed were transferred to soil where they have flowered and also set fruits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号