首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Effects of hydrated water on protein unfolding   总被引:5,自引:0,他引:5  
The conformational stability of a protein in aqueous solution is described in terms of the thermodynamic properties such as unfolding Gibbs free energy, which is the difference in the free energy (Gibbs function) between the native and random conformations in solution. The properties are composed of two contributions, one from enthalpy due to intramolecular interactions among constituent atoms and chain entropy of the backbone and side chains, and the other from the hydrated water around a protein molecule. The hydration free energy and enthalpy at a given temperature for a protein of known three-dimensional structure can be calculated from the accessible surface areas of constituent atoms according to a method developed recently. Since the hydration free energy and enthalpy for random conformations are computed from those for an extended conformation, the thermodynamic properties of unfolding are evaluated quantitatively. The evaluated hydration properties for proteins of known transition temperature (Tm) and unfolding enthalpy (delta Hm) show an approximately linear dependence on the number of constituent heavy atoms. Since the unfolding free energy is zero at Tm, the enthalpy originating from interatomic interactions of a polypeptide chain and the chain entropy are evaluated from an experimental value of delta Hm and computed properties due to the hydrated water around the molecule at Tm. The chain enthalpy and entropy thus estimated are largely compensated by the hydration enthalpy and entropy, respectively, making the unfolding free energy and enthalpy relatively small. The computed temperature dependences of the unfolding free energy and enthalpy for RNase A, T4 lysozyme, and myoglobin showed a good agreement with the experimental ones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A study on the enthalpy-entropy compensation in protein unfolding   总被引:3,自引:0,他引:3  
A large number of thermodynamic data including the free energy, enthalpy, entropy, and heat capacity changes were collected for the denaturation of various proteins. Regression indicated that remarkable enthalpy-entropy compensation occurred in protein unfolding, which meant that the change in enthalpy was almost compensated by a corresponding change in entropy resulting in a smaller net free energy change. This behavior was proposed to result from the water molecule reorganization, which contributed significantly to the enthalpy and entropy changes but little to the free energy change in protein unfolding. It turned out that the enthalpy-entropy compensation could provide novel insights into the problem of enthalpy and entropy convergence in protein unfolding.  相似文献   

3.
L Kelly  L A Holladay 《Biochemistry》1990,29(21):5062-5069
Differential scanning microcalorimetry (DSC) of horse, rat, opossum, raccoon, carp, and armadillo metmyoglobins at alkaline pH gave data that fit the two-state unfolding model well. Monte Carlo studies were used to assess the impact of truncating DSC scans on the reliability of the calculated results when aggregation exotherms overlapped the unfolding endotherm at the high-temperature end of the scan. The DSC estimates for the conformational free energy at pH 8 and 298 K are compared to earlier results from isothermal acid and guanidinium chloride unfolding. Stability estimates at pH 8 for these six metmyoglobins obtained by DSC experiments do not agree with free energy estimates at pH 8 from guanidinium chloride unfolding. This is true for all three models used to extrapolate the free energy change to 0 M guanidinium chloride. Among these six myoglobins, significant variation appears in the temperature at which the myoglobin is half-unfolded, in the change in heat capacity upon unfolding, and in the change in enthalpy at 310 K. Calculations made with the hydrophobic model for protein folding [Baldwin, R.L. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8069] suggest that a sizable variation exists for that portion of the unfolding enthalpy change assigned to forces other than the hydrophobic effect.  相似文献   

4.
Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.  相似文献   

5.
The stability parameters delta Gst, delta Hst and delta Sst of native basic pancreatic trypsin inhibitor (BPTI) have been characterized by microcalorimetric unfolding studies in various buffer solutions, at different pH values and in the presence of guanidine hydrochloride. The unfolding enthalpy of BPTI, in contrast ot other globular proteins, exhibits a very small dependence on temperature, which results in a characteristic different temperature dependence of the Gibbs energy of stabilization. BPTI has a very high specific Gibbs energy of stabilization, which renders the slow exchange rates of amide protons understandable. Comparison of the unfolding entropy of BPTI at 110 degrees C with corresponding values of other proteins, revealed that the delta S values of BPTI are lower by 2.9 J/(K X residue). This lower value of the unfolding entropy is in good agreement with predictions of a theoretical study by Poland & Scheraga (1965) where the influence of crosslinks on the configurational entropy has been studied. Additionally, we were able to calculate an interaction enthalpy per site of -5.6 kJ/mol based on the measurements of unfolding of BPTI in 6 M-guanidine hydrochloride.  相似文献   

6.
The thermodynamic stability of beta-lactoglobulin (beta-Lg) was studied at acidic and near-neutral pH values using equilibrium thermal-unfolding measurements. Transition temperature increased with a decrease in pH from 7.5 to 6.5 and 3.0 to 1.5, suggesting an increase in the net protein stability. Determination of the change in free energy of unfolding and extrapolation into the nontransition region revealed that beta-Lg increases its stability by increasing the magnitude of the change in free energy of unfolding at the temperature of maximum stability, as well as by increasing the temperature of maximum stability. The relative difference in the change in free energy of unfolding at 70 degrees C (with a reference pH of 7.5) was positive and its magnitude increased with a decrease in pH from 7.0 to 1.5 van't Hoff plots of thermal unfolding of beta-Lg at all pH values studied were non-linear and the measured changes in the enthalpy and entropy of unfolding for beta-Lg were high and positive. The relative magnitude of change of both enthalpy and entropy at 70 degrees C (compared with pH 7.5) increased with a decrease in pH up to 1.5. A possible mechanism for the increased stability of beta-Lg at low pH is discussed.  相似文献   

7.
This paper presents an analysis of plots of enthalpy versus heat capacity change at 25 degrees C for the unfolding of proteins and for the dissolution of gaseous, liquid and solid solutes, first reported by Murphy, Privalov & Gill. The negative slope in the enthalpy plot for proteins is interpreted as arising from a large penalty associated with burying polar groups in the protein interior. The small enthalpy changes that accompany protein unfolding at 25 degrees C are also discussed. It is argued that the combined effects of hydrogen bond formation and close packing predict a large positive enthalpy of unfolding. Electrostatic calculations indicate that the penalty associated with burying polar groups is large enough to effectively cancel these terms, leading to the small net enthalpy changes that are observed. The free energy changes associated with protein folding are also discussed. The free energy cost of burying polar groups largely compensates for the stabilizing contribution of the hydrophobic effect and would appear to account for the fact that proteins are marginally stable, independent of their size and of their relative hydrophobicities.  相似文献   

8.
Unfolding of the small alpha-amylase inhibitor tendamistat (74 residues, 2 disulfide bridges) has been characterized thermodynamically by high sensitivity scanning microcalorimetry. To link the stability parameters with structural information we use heat capacity group parameters and water accessible surface areas to calculate the change in heat capacity on unfolding of tendamistat. Our results show that both the group parameter and surface area approaches provide a reasonable, though not perfect, basis for delta Cp calculations. When using the experimentally determined temperature-independent heat capacity increase of 2.89 kJ mol-1 K-1 tendamistat exhibits convergence of thermodynamic parameters at about 140 degrees C, in agreement with recent predictions of the temperature at which the hydrophobic hydration is supposed to disappear. Despite the apparent support of this new view of the hydrophobic effect, there are inconsistencies in the interpretation of the thermodynamic parameters and these are addressed in the Discussion. The specific stability of tendamistat is similar to that of modified bovine pancreatic trypsin inhibitor, with only two of the native three disulfide bridges intact. This observation confirms our previous conclusion that disulfide bridges affect significantly the enthalpy and entropy of unfolding. The recent study by Doig & Williams provides additional convincing support for this conclusion. The predictive scheme proposed by these authors permits a fair estimate of the Gibbs free energy and enthalpy changes of these two proteins.  相似文献   

9.
The structural stability of the protein, phycocyanin isolated from two strains of cyanophyta, Synechococcus lividus (thermophile) and Phormidium luridum (mesophile), are investigated by comparative thermal and denaturant unfolding, using differential scanning calorimetry, visible absorption spectrophotometry, and circular dichroism. The thermophilic protein exhibits a much higher temperature and enthalpy of unfolding from the native to the denatured state. The concentration of urea at half-completion of thermal unfolding is essentially the same between the thermophilic and mesophilic proteins; in contrast, the corresponding temperature and the enthalpy of thermal unfolding are much higher for the thermophilic protein. In addition, the concentration of urea at which the non-thermal (denaturant) unfolding of protein is half-completed, as detected by either circular dichroism or absorption spectroscopy, is significantly higher in the thermophilic protein, while the apparent free energy of unfolding only shows a moderate difference between the two proteins. The distinct differences in the enthalpy of thermal unfolding and the free energy of denaturant unfolding are interpreted in terms of a significant entropy change associated with the unfolding of these proteins. This entropy contribution is much higher in the thermophilic protein, and may be derived from its more rigid overall structure that possesses higher internal hydrophobicity and stronger internal packing.  相似文献   

10.
Changes in free energy are normally used to track the effect of temperature on the stability of proteins and hydrophobic interactions. Use of this procedure on the aqueous solubility of hydrocarbons, a standard representation of the hydrophobic effect, leads to the conclusion that the hydrophobic effect increases in strength as the temperature is raised to approximately 140 degrees C. Acceptance of this interpretation leads to a number of far-reaching conclusions that are at variance with the original conception of the hydrophobic effect and add considerably to the complexity of interpretation. There are two legitimate thermodynamic functions that can be used to look at stability as a function of temperature: the standard Gibbs free energy change, deltaG degrees, and deltaG degrees/T. The latter is proportional to the log of the equilibrium constant and is sometimes called the Massieu-Planck function. Arguments are presented for using deltaG degrees/T rather than deltaG degrees for variations in stability with temperature. This makes a considerable difference in the interpretation of the hydrophobic interaction, but makes little change in the stability profile of proteins. Protein unfolding and the aqueous solubility of benzene are given as examples. The contrast between protein unfolding and the hydration of nonpolar molecules provides a rough estimate of the contribution of other factors that stabilize and destabilize protein structure.  相似文献   

11.
The heat capacity, enthalpy, entropy, and Gibbs energy changes for the temperature-induced unfolding of 11 globular proteins of known three-dimensional structure have been obtained by microcalorimetric measurements. Their experimental values are compared to those we calculate from the change in solvent-accessible surface area between the native proteins and the extended polypeptide chain. We use proportionality coefficients for the transfer (hydration) of aliphatic, aromatic, and polar groups from gas phase to aqueous solution, we estimate vibrational effects, and we discuss the temperature dependence of each constituent of the thermodynamic functions. At 25 degrees C, stabilization of the native state of a globular protein is largely due to two favorable terms: the entropy of non-polar group hydration and the enthalpy of interactions within the protein. They compensate the unfavorable entropy change associated with these interactions (conformational entropy) and with vibrational effects. Due to the large heat capacity of nonpolar group hydration, its stabilizing contribution decreases quickly at higher temperatures, and the two unfavorable entropy terms take over, leading to temperature-induced unfolding.  相似文献   

12.
We report the first detailed thermodynamic analysis of simplified proteins by differential scanning calorimetry (DSC). The experiments were carried out with five simplified BPTI variants, whose structures and activities have been reported, in which several residues not essential for specifying the tertiary structure were replaced by alanine. In most aspects, the thermodynamics of simplified proteins were very similar to, if not essentially identical with, those of natural proteins. In particular, they undergo a highly cooperative two-state thermal unfolding process with a large enthalpy change, which is a thermodynamic hallmark of the native state of natural globular proteins. Furthermore, the specific enthalpy and entropy changes upon unfolding at 110 degrees C were close to values invariably observed for small natural globular proteins (55 J g(-1) and ~16 J K(-1) g(-1), respectively). On the other hand, two simplified BPTI variants, BPTI-21 and BPTI-22 (containing 21 and 22 alanine residues), were enthalpically stabilized while entropically destabilized with respect to the reference BPTI-[5,55] molecule. This peculiar type of entropy-enthalpy compensation is in sharp contrast to the usual enthalpy destabilization/entropy stabilization observed in mutational studies of natural proteins. Overall, we conclude that a thermodynamic native state can be achieved by proteins encoded with extensively simplified sequences.  相似文献   

13.
Heat-denaturation of tryptophan synthase alpha-subunit from E. coli and two mutant proteins (Glu 49 leads to Gln or Ser; called Gln 49 or Ser 49, respectively) has been studied by the scanning microcalorimetric method at various pH, in an attempt to elucidate the role of individual amino acid residues in the conformational stability of a protein. The partial specific heat capacity in the native state at 20 degrees, Cp20, has been found to be (0.43 +/- 0.02) cal . k-1 . g-1, the unfolding heat capacity change, delta dCp, (0.10 +/- 0.01) cal . K-1 . g-1, and the unfolding enthalpy value extrapolated to 110 degrees, delta dh110, (9.3 +/- 0.5) cal . g-1 for the three proteins. The value of Cp20 was larger than those found for "fully compact protein" and that of delta dh110 was smaller. Unfolding Gibbs energy, delta dG at 25 degrees for Wild-type, Gln 49, and Ser 49 were 5.8, 8.4, and 7.1 kcal . mol-1 at pH 9.3, respectively. Unfolding enthalpy, delta dH, of the three proteins seemed to be the same and equal to (23.2 +/- 1.2) kcal . mol-1 at 25 degrees. As a consequence of the same value of delta dH and the different value in delta dG, substantial differences in unfolding entropy, delta dS, were found for the three proteins. The values of delta dG for the three proteins at 25 degrees coincided with those from equilibrium methods of denaturation by guanidine hydrochloride.  相似文献   

14.
Circular dichroism (CD) is an excellent spectroscopic technique for following the unfolding and folding of proteins as a function of temperature. One of its principal applications is to determine the effects of mutations and ligands on protein and polypeptide stability. If the change in CD as a function of temperature is reversible, analysis of the data may be used to determined the van't Hoff enthalpy and entropy of unfolding, the midpoint of the unfolding transition and the free energy of unfolding. Binding constants of protein-protein and protein-ligand interactions may also be estimated from the unfolding curves. Analysis of CD spectra obtained as a function of temperature is also useful to determine whether a protein has unfolding intermediates. Measurement of the spectra of five folded proteins and their unfolding curves at a single wavelength requires approximately 8 h.  相似文献   

15.
Extensive measurements and analysis of thermodynamic stability and kinetics of urea-induced unfolding and folding of hisactophilin are reported for 5-50 degrees C, at pH 6.7. Under these conditions hisactophilin has moderate thermodynamic stability, and equilibrium and kinetic data are well fit by a two-state transition between the native and the denatured states. Equilibrium and kinetic m values decrease with increasing temperature, and decrease with increasing denaturant concentration. The betaF values at different temperatures and urea concentrations are quite constant, however, at about 0.7. This suggests that the transition state for hisactophilin unfolding is native-like and changes little with changing solution conditions, consistent with a narrow free energy profile for the transition state. The activation enthalpy and entropy of unfolding are unusually low for hisactophilin, as is also the case for the corresponding equilibrium parameters. Conventional Arrhenius and Eyring plots for both folding and unfolding are markedly non-linear, but these plots become linear for constant DeltaG/T contours. The Gibbs free energy changes for structural changes in hisactophilin have a non-linear denaturant dependence that is comparable to non-linearities observed for many other proteins. These non-linearities can be fit for many proteins using a variation of the Tanford model, incorporating empirical quadratic denaturant dependencies for Gibbs free energies of transfer of amino acid constituents from water to urea, and changes in fractional solvent accessible surface area of protein constituents based on the known protein structures. Noteworthy exceptions that are not well fit include amyloidogenic proteins and large proteins, which may form intermediates. The model is easily implemented and should be widely applicable to analysis of urea-induced structural transitions in proteins.  相似文献   

16.
Thermodynamics of BPTI folding.   总被引:9,自引:9,他引:0       下载免费PDF全文
A calorimetric study of the basic pancreatic trypsin inhibitor (BPTI) has been performed using the new generation of the adiabatic scanning microcalorimeters, operating in an extended temperature range of 5-130 degrees C. Precise measurements of the heat capacities of the native and unfolded states of BPTI show that the heat capacity change upon unfolding strongly depends on temperature; its value is maximal at about 50 degrees C and diminishes as the temperature is increased. The temperature dependencies of the enthalpy and entropy changes upon BPTI unfolding were found to be similar to those normally observed for other small globular proteins. The stability of BPTI has been correlated with its structure.  相似文献   

17.
The thermodynamic effects of the disulfide bond of the fragment protein of the starch-binding domain of Aspergillus niger glucoamylase was investigated by measuring the thermal unfolding of the wild-type protein and its two mutant forms, Cys3Gly/Cys98Gly and Cys3Ser/Cys98Ser. The circular dichroism spectra and the thermodynamic parameters of binding with beta-cyclodextrin at 25 degrees C suggested that the native structures of the three proteins are essentially the same. Differential scanning calorimetry of the thermal unfolding of the proteins showed that the unfolding temperature t1/2 of the two mutant proteins decreased by about 10 degrees C as compared to the wild-type protein at pH 7.0. At t1/2 of the wild-type protein (52.7 degrees C), the mutant proteins destabilized by about 10 kJ mol(-1) in terms of the Gibbs energy change. It was found that the mutant proteins were quite stabilized in terms of enthalpy, but that a higher entropy change overwhelmed the enthalpic effect, resulting in destabilization.  相似文献   

18.
Dürr E  Jelesarov I 《Biochemistry》2000,39(15):4472-4482
Protein stability in vitro can be influenced either by introduction of mutations or by changes in the chemical composition of the solvent. Recently, we have characterized the thermodynamic stability and the rate of folding of the engineered dimeric leucine zipper A(2), which has a strengthened hydrophobic core [Dürr, E., Jelesarov, I., and Bosshard, H. R. (1999) Biochemistry 38, 870-880]. Here we report on the energetic consequences of a cavity introduced by Leu/Ala substitution at the tightly packed dimeric interface and how addition of 30% glycerol affects the folding thermodynamics of A(2) and the cavity mutants. Folding could be described by a two-state transition from two unfolded monomers to a coiled coil dimer. Removal of six methylene groups by Leu/Ala substitutions destabilized the dimeric coiled coil by 25 kJ mol(-1) at pH 3.5 and 25 degrees C in aqueous buffer. Destabilization was purely entropic at around room temperature and became increasingly enthalpic at elevated temperatures. Mutations were accompanied by a decrease of the unfolding heat capacity by 0.5 kJ K(-1) mol(-1). Addition of 30% glycerol increased the free energy of folding of A(2) and the cavity mutants by 5-10 kJ mol(-1) and lowered the unfolding heat capacity by 25% for A(2) and by 50% for the Leu/Ala mutants. The origin of the stabilizing effect of glycerol varied with temperature. Stabilization of the parent leucine zipper A(2) was enthalpic with an unfavorable entropic component between 0 and 100 degrees C. In the case of cavity mutants, glycerol induced enthalpic stabilization below 50 degrees C and entropic stabilization above 50 degrees C. The effect of glycerol could not be accounted for solely by the enthalpy and entropy of transfer or protein surface from water to glycerol/water mixture. We propose that in the presence of glycerol the folded coiled coil dimer is better packed and displays less intramolecular fluctuations, leading to enhanced enthalpic interactions and to an increase of the entropy of folding. This work demonstrates that mutational and solvent effects on protein stability can be thermodynamically complex and that it may not be sufficient to only analyze changes of enthalpy and entropy at the unfolding temperature (T(m)) to understand the mechanisms of protein stabilization.  相似文献   

19.
We performed thermodynamic analysis of temperature-induced unfolding of mesophilic and thermophilic proteins. It was shown that the variability in protein thermostability associated with pH-dependent unfolding or linked to the substitution of amino acid residues on the protein surface is evidence of the governing role of the entropy factor. Numerical values of conformational components in enthalpy, entropy and free energy which characterize protein unfolding in the “gas phase” were obtained. Based on the calculated absolute values of entropy and free energy, a model of protein unfolding is proposed in which the driving force is the conformational entropy of native protein, as an energy of the heat motion (T·SNC) increasing with temperature and acting as an factor devaluating the energy of intramolecular weak bonds in the transition state.  相似文献   

20.
Amphipathic alpha-helices are the membrane binding motif in many proteins. The corresponding peptides are often random coil in solution but are folded into an alpha-helix upon interaction with the membrane. The energetics of this ubiquitous folding process are still a matter of conjecture. Here, we present a new method to quantitatively analyze the thermodynamics of peptide folding at the membrane interface. We have systematically varied the helix content of a given amphipathic peptide when bound to the membrane and have correlated the thermodynamic binding parameters determined by isothermal titration calorimetry with the alpha-helix content obtained by circular dichroism spectroscopy. The peptides investigated were the antibiotic magainin 2 amide and three analogs in which two adjacent amino acid residues were substituted by their d-enantiomers. The thermodynamic parameters controlling the alpha-helix formation were found to be linearly related to the helicity of the membrane-bound peptides. Helix formation at the membrane surface is characterized by an enthalpy change of DeltaH(helix) approximately -0.7 kcal/mol per residue, an entropy change of DeltaS(helix) approximately -1.9 cal/molK residue and a free energy change of DeltaG(helix)=-0.14 kcal/mol residue. Helix formation is a strong driving force of peptide insertion into the membrane and accounts for about 50 % of the free energy of binding. An increase in temperature entails an unfolding of the membrane-bound helix. The temperature dependence can be described with the Zimm-Bragg theory and the enthalpy of unfolding agrees with that deduced from isothermal titration calorimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号