共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Targeted integration of DNA using mutant lox sites in embryonic stem cells. 总被引:11,自引:4,他引:11
下载免费PDF全文

Site-directed DNA integration has been achieved by using a pair of mutant lox sites, a right element (RE) mutant lox site and a left element (LE) mutant lox site [Albertet al. (1995)Plant J., 7, 649-659], in mouse embryonic stem (ES) cells. We established ES cell lines carrying a single copy of the wild-type lox Por LE mutant lox site as a target and examined the frequency of site-specific integration of a targeting vector carrying a loxP or RE mutant lox site induced by Cre transient expression. Since our targeting vector contains a complete neo gene, random integrants can form colonies as in the case of a gene targeting event through homologous recombination. With our system, the frequency of site-specific integration via the mutant lox sites reached a maximum of 16%. In contrast, the wild-type loxP sites yielded very low frequencies (<0.5%) of site-specific integration events. This mutatedloxsystem will be useful for 'knock-in' integration of DNA in ES cells. 相似文献
3.
Summary Normally quiescent cortical tissue of pea roots can be induced, by severing the adjacent vascular cylinder of the root, to undergo redifferentiation to form new files of tracheary and sieve elements which bridge the wound. The development of vascular transfer cells is also induced. Redifferentiation is normally accompanied by division of the original cortical cells. The planes of cell division, especially those preceding sieve element formation, are aligned very precisely in adjacent cells, to produce smooth files of cells. In roots wounded 3–4 mm from the apex, bands of microtubules in the periphery of the cells (pre-prophase bands) form at sites which correspond to the expected planes of cell division. 相似文献
4.
Holley RJ Pickford CE Rushton G Lacaud G Gallagher JT Kouskoff V Merry CL 《The Journal of biological chemistry》2011,286(8):6241-6252
Heparan sulfate proteoglycans (HSPG) encompass some of the most abundant macromolecules on the surface of almost every cell type. Heparan sulfate (HS) chains provide a key interaction surface for the binding of numerous proteins such as growth factors and morphogens, helping to define the ability of a cell to respond selectively to environmental cues. The specificity of HS-protein interactions are governed predominantly by the order and positioning of sulfate groups, with distinct cell types expressing unique sets of HS epitopes. Embryos deficient in HS-synthesis (Ext1(-/-)) exhibit pre-gastrulation lethality and lack recognizable organized mesoderm and extraembryonic tissues. Here we demonstrate that embryonic stem cells (ESCs) derived from Ext1(-/-) embryos are unable to differentiate into hematopoietic lineages, instead retaining ESC marker expression throughout embryoid body (EB) culture. However hematopoietic differentiation can be restored by the addition of soluble heparin. Consistent with specific size and composition requirements for HS:growth factor signaling, chains measuring at least 12 saccharides were required for partial rescue of hematopoiesis with longer chains (18 saccharides or more) required for complete rescue. Critically N- and 6-O-sulfate groups were essential for rescue. Heparin addition restored the activity of multiple signaling pathways including bone morphogenic protein (BMP) with activation of phospho-SMADs re-established by the addition of heparin. Heparin addition to wild-type cultures also altered the outcome of differentiation, promoting hematopoiesis at low concentrations, yet inhibiting blood formation at high concentrations. Thus altering the levels of HS and HS sulfation within differentiating ESC cultures provides an attractive and accessible mechanism for influencing cell fate. 相似文献
5.
Ascidian larvae develop after an invariant pattern of embryonic cleavage. Fewer than 400 cells constitute the larval central nervous system (CNS), which forms without either extensive migration or cell death. We catalogue the mitotic history of these cells in Ciona intestinalis, using confocal microscopy of whole-mount embryos at stages from neurulation until hatching. The positions of cells contributing to the CNS were reconstructed from confocal image stacks of embryonic nuclei, and maps of successive stages were used to chart the mitotic descent, thereby creating a cell lineage for each cell. The entire CNS is formed from 10th- to 14th-generation cells. Although minor differences exist in cell position, lineage is invariant in cells derived from A-line blastomeres, which form the caudal nerve cord and visceral ganglion. We document the lineage of five pairs of presumed motor neurons within the visceral ganglion: one pair arises from A/A 10.57, and four from progeny of A/A 9.30. The remaining cells of the visceral ganglion are in their 13th and 14th generations at hatching, with most mitotic activity ceasing around 85% of embryonic development. Of the approximately 330 larval cells previously reported in the CNS of Ciona, we document the lineage of 226 that derive predominantly from A-line blastomeres. 相似文献
6.
Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas 总被引:9,自引:0,他引:9
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity. 相似文献
7.
Yagi H Saito T Yanagisawa M Yu RK Kato K 《The Journal of biological chemistry》2012,287(29):24356-24364
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development. 相似文献
8.
The addition of 5-azacytidine to erythroleukemic cells which were induced to differentiate with DMSO or BA altered the expression of the hemoglobins. After the addition of 5-azacytidine there was an increase in hemoglobin synthesis especially in the embryonic E2 band. The beta-globin increased in synthesis after 5-azacytidine treatment. The level of hemoglobin synthesis in DMSO-induced cells is less than BA-induced cells while the effect of the 5-azacytidine stimulation was greater with DMSO induction than with BA induction. 相似文献
9.
Freezing and thawing processes of the E. coli cell suspension have been studied by NMR. It was shown that the degree of the cell dehydration correlated with its freezing time. The effect of the recrystallization processes was evaluated and its temperature range was indicated. It was noted that nonfreezing water content increased during thawing of the cells as compared to this content at the same temperature during freezing. 相似文献
10.
11.
Recently, a suite of cell migration assays were conducted to investigate the migration of neural crest (NC) cells along the gut during the development of the enteric nervous system (ENS). The NC cells colonise the gastro-intestinal tract as a rostro-caudal wave. Local behaviour was shown to be controlled by position relative to the leading edge of the wavefront. The assays involved chick-quail grafting techniques allowing the total invading population to be considered as a two-species system. A two-species continuum model with logistic proliferation and a migration mechanism is developed here to simulate the chick-quail graft experiments and provide a means of looking at the processes occurring within the invasion wave. Five migration mechanisms are considered--linear diffusion, two cases of nonlinear diffusion, chemokinesis and chemotaxis. The model results agree with the experimental observations, regardless of the specific type of migration mechanism. The results show that NC cell invasion is driven by proliferation and cell motility at the leading edge of the wave. Furthermore, logistic proliferation exerts the dominant control on the system. This observation is confirmed by analysing some simplified invasion models. Once the basic experiments were mathematically replicated, the mathematical models were used in turn to make some predictions that were yet to be experimentally tested. This involved conducting a sensitivity analysis of the system by interrupting the proliferation and/or migration ability of the leading edge. Numerical results show that the system is stable against these changes. Of the three experiments suggested, one was carried out and the experimental results were concordant with the theoretical predictions. The outcome of two other suggested experiments are predicted and left for future experimental validation. 相似文献
12.
Shigetomo Fukuhara Jianghui Zhang Shinya Yuge Koji Ando Yuki Wakayama Asako Sakaue-Sawano Atsushi Miyawaki Naoki Mochizuki 《Developmental biology》2014
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo. 相似文献
13.
Summary Explants comprising about 15 cells were dissected from various regions of the blastula ofAmbystoma mexicanum and cultured in Barth's medium. By addition of L-tyrosine to the culture medium it was possible to induce melanin synthesis in three different cells types: undifferentiated embryonic cells, mesenchyme cells and nerve cells. Tyrosine was found to act as an inductor in a very low concentration (1 M). It is suggested that tyrosine serves both as an inductor and as a substrate for melanin synthesis in the amphibian larva. 相似文献
14.
Krassowska A Gordon-Keylock S Samuel K Gilchrist D Dzierzak E Oostendorp R Forrester LM Ansell JD 《Experimental cell research》2006,312(18):3595-3603
We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We conclude that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance. 相似文献
15.
16.
Summary In embryos of the modern sea urchin species, subclass Euechinoidea, primary mesenchyme cells are derived from the progeny of micromeres formed at the sixteen cell stage of embryogenesis. The micromeres reside within the vegetal plate epithelium and later ingress into the blastocoel as primary mesenchyme cells which form the larval skeleton. Embryos of Eucidaris tribuloides, a member of the primitive subclass Perischoechinoidea, exhibit several noteworthy differences from euechinoid primary mesenchyme cell lineage including variable numbers and sizes of micromeres, the absence of mesenchyme ingression, and the lack of any detectable primary mesenchyme although a larval skeleton forms. In the present study, the cell lineage of the spiculogenic mesenchyme has been studied in Eucidaris tribuloides and in the euechinoid Lytechinus pictus by microinjecting the fluorescent tracer, Lucifer Yellow, into individual blastomeres of the embryo. In addition, wheat germ agglutinin, a lectin which binds only to primary mesenchyme cells of the early euechinoid embryo, was injected into the blastocoel of embryos of both species in order to examine the distribution of cells which possess primary mesenchyme-specific cell surface markers. The results of these experiments demonstrate that the spiculogenic mesenchyme of both Lytechinus and Eucidaris arise from descendants of micromeres formed at the sixteen cell stage, although the temporal and spatial distribution of these mesenchyme cells varies considerably between species. Furthermore, the evidence obtained suggests that the information necessary for spicule formation is already segregated to the vegetal pole by the eight cell stage. The results also suggest that there are no gap junctions present between the blastomeres of the early sea urchin embryo. 相似文献
17.
Ghrelin is broadly expressed in myocardial tissues, where it exerts different functions. It also has been found to have a wide variety of biological functions on cell differentiation and tissue development. The aim of this study was to investigate the effect of ghrelin on human embryonic stem cell (hESC) differentiation in infarcted cardiac microenvironment. The hESCs grown on feeder layers expressed several pluripotential markers including alkaline phosphatase (AKP). Four weeks after transplantation into rat infarcted hearts, the hESCs and their progeny cells survived and formed intracardiac grafts were 54.7% and 19.6% respectively in ghrelin- and phosphate-buffered saline (PBS)-treated groups. Double immunostaining with anti-human Sox9 and anti-HNA or anti-human fetal liver kinase-1 (Flk1) and anti β-tubulin showed that the human grafts were in development. However, double positive stains were only found in the ghrelin-treated group. In addition, the hESC injection protocol was insufficient to restore heart function of the acute myocardial infarction model. Our study, therefore, provides a new insight of ghrelin on promoting hESC survival and differentiation in rat infarcted cardiac microenvironment. This may give a clue for therapy for myocardial infarction by hESCs or progeny cells. 相似文献
18.
Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium 总被引:1,自引:0,他引:1
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced. 相似文献
19.
Perez-Pinera P Hernandez T García-Suárez O de Carlos F Germana A Del Valle M Astudillo A Vega JA 《Molecular and cellular biochemistry》2007,302(1-2):19-26
The cross-signaling between (cell) adhesion molecules is nowadays a well-accepted phenomenon and includes orchestrated cellular
changes and changes in the microenvironment. For example, Ep-CAM is an epithelial adhesion molecule that prevails in active
proliferating tissue and is suppressed in a more differentiated state of the cell. E-cadherin adhesion complexes are typical
for the advanced and terminal differentiated cell status. During normal proliferation, E-cadherin is not suppressed. We have
demonstrated the effect of overexpression of Ep-CAM on E-cadherin, which probably affects the connection of cadherins and
F-actin. Phosphatidylinositol 3-kinase (Pi3K) participates in various regulating mechanisms, for example in signaling to nuclei,
vesicle transport, and cytoskeletal rearrangements. The effect of Ep-CAM on E-cadherin mediated junctions as well as the involvement
of Pi3K in regulating adherens junctions, led us to investigate the potential interaction between Pi3K and Ep-CAM. Introduction
of Ep-CAM in the epithelial cells caused abrogation of N-cadherin mediated cell–cell adhesion, which could be inhibited by
Pi3K inhibitor LY294002. Moreover, the Pi3K subunit p85 was precipitated with Ep-CAM from cell lysates, and this complex showed
kinase activity. The Pi3K activity shuttled from N-cadherin to Ep-CAM.
From our results, we conclude that Ep-CAM cross signaling with N-cadherin involves Pi3K, resulting in the abrogation of the
cadherin adhesion complexes in epithelial cells. 相似文献
20.
Characterization of adhesion zones in E. coli cells 总被引:2,自引:0,他引:2
After plasmolysis of Escherichia coli cells, the adhesion zones were characterized using the cytochemical PTA and SP procedures which stain peptidoglycan and lipopolysaccharides (LPS) respectively. A PTA-stained layer was detected at the adhesion sites. This layer was visualized irrespective of the electron microscopy procedure used. Also, using SP staining an outer membrane in which LPS molecules were asymmetrically distributed, was observed. 相似文献