首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is involved in many neuronal functions such as neuromodulation and intracellular signaling. Recent studies have demonstrated that nitric oxide is involved in regulation of proteasomal protein degradation. However, its role in neuronal protein degradation still remains unclear. In our study, we investigated the influence of endogenous nitric oxide production in this process. We have shown that nitric oxide synthase blockade prevents decline of the UbG76V-GFP fluorescence (GFP-based proteasomal protein degradation reporter) in neuronal processes of the cultured hippocampal neurons. It suggests that nitric oxide may regulate ubiquitin-dependent proteasomal protein degradation in neurons. Also, we have confirmed that the NO synthesis blockade alone significantly impairs long-term potentiation, and demonstrated for the first time that simultaneous blockade of the NO and proteins synthesis leads to the long-term potentiation amplitude rescue to the control values. Obtained results suggest that nitric oxide is involved in the protein degradation in proteasomes in physiological conditions.  相似文献   

2.
The gaseous messenger nitric oxide plays a role in a variety of biological functions. Evidence accumulated over the last 7 years indicates that functions of nitric oxide in apoptosis growth and differentiation may originate in part from an interplay with signalling members of the sphingolipid family. Interactions between nitric oxide and sphingolipids have been shown to be multiple, to involve regulation of activity and expression of the enzymes responsible for the synthesis of nitric oxide and of those involved in the sphingolipid metabolic pathways. Recent evidence indicates that one of these interactions, namely the cross-talk of sphingomyelinases and their product ceramide with nitric oxide and its generating enzyme endothelial nitric oxide synthase, plays prominent roles during key patho-physiological processes such as inflammation, proliferation, death and differentiation.  相似文献   

3.
Abstract: Microtubule-associated protein 2 (MAP2), a component of the neuronal cytoskeleton, has attracted attention as a possible cellular substrate linking hippocampal N -methyl- d -aspartate (NMDA) receptor stimulation to alterations in cellular morphology. We show here that microinjection of NMDA, 8-bromo-cyclic GMP, or sin-1 molsidomine (which spontaneously releases nitric oxide), onto the molecular layer of the hippocampal dentate gyrus, increased the levels of MAP2 mRNA in the affected granule cells. No changes were observed in the levels of mRNAs encoding several other cytoskeletal components. This shows that hippocampal NMDA receptor stimulation can potentially initiate a long-term alteration in dendritic structure by affecting MAP2 gene expression and provides the first evidence that nitric oxide release in vivo, acting through cyclic GMP-dependent protein kinase, can cause long-term changes in neuronal function by modulating gene expression.  相似文献   

4.
The reaction rate between nitric oxide and intraerythrocytic hemoglobin plays a major role in nitric oxide bioavailability and modulates homeostatic vascular function. It has previously been demonstrated that the encapsulation of hemoglobin in red blood cells restricts its ability to scavenge nitric oxide. This effect has been attributed to either factors intrinsic to the red blood cell such as a physical membrane barrier or factors external to the red blood cell such as the formation of an unstirred layer around the cell. We have performed measurements of the uptake rate of nitric oxide by red blood cells under oxygenated and deoxygenated conditions at different hematocrit percentages. Our studies include stopped-flow measurements where both the unstirred layer and physical barrier potentially participate, as well as competition experiments where the potential contribution of the unstirred layer is limited. We find that deoxygenated erythrocytes scavenge nitric oxide faster than oxygenated cells and that the rate of nitric oxide scavenging for oxygenated red blood cells increases as the hematocrit is raised from 15% to 50%. Our results 1) confirm the critical biological phenomenon that hemoglobin compartmentalization within the erythrocyte reduces reaction rates with nitric oxide, 2) show that extra-erythocytic diffusional barriers mediate most of this effect, and 3) provide novel evidence that an oxygen-dependent intrinsic property of the red blood cell contributes to this barrier activity, albeit to a lesser extent. These observations may have important physiological implications within the microvasculature and for pathophysiological disruption of nitric oxide homeostasis in diseases.  相似文献   

5.
Nitrite reductase activity is a novel function of mammalian mitochondria.   总被引:18,自引:0,他引:18  
A V Kozlov  K Staniek  H Nohl 《FEBS letters》1999,454(1-2):127-130
Nitrite, which is the major stable degradation product of nitric oxide, exists in all tissues capable of nitric oxide synthesis from L-arginine. The present study provides experimental evidence that nitrite in contact with respiring mitochondria accepts reducing equivalents from the ubiquinone cycle of the respiratory chain. Univalent reduction of nitrite was totally inhibited by myxothiazol. We therefore conclude on the involvement of redox cycling that ubisemiquinone is associated with the bc1 complex. Recycling of nitric oxide degradation products via these electron carriers may become a threat to energy-linked respiration since nitric oxide in direct contact with mitochondria was shown to slow the energy-linked respiration down and to trigger a mitochondrial source for superoxide radicals. Until now, the existence of nitrite reductase activity was only demonstrated in plants and bacteria. In addition, the present observation elucidates the existence of a nitric oxide synthase-independent nitric oxide source.  相似文献   

6.
Hydroxyurea is a relatively new treatment for sickle cell disease. A portion of hydroxyurea's beneficial effects may be mediated by nitric oxide, which has also drawn considerable interest as a sickle cell disease treatment. Patients taking hydroxyurea show a significant increase in iron nitrosyl hemoglobin and plasma nitrite and nitrate within 2 h of ingestion, providing evidence for the in vivo conversion of hydroxyurea to nitric oxide. Hydroxyurea reacts with hemoglobin to produce iron nitrosyl hemoglobin, nitrite, and nitrate, but these reactions do not occur fast enough to account for the observed increases in these species in patients taking hydroxyurea. This report reviews recent in vitro studies directed at better understanding the in vivo nitric oxide release from hydroxyurea in patients. Specifically, this report covers: (1) peroxidase-mediated formation of nitric oxide from hydroxyurea; (2) nitric oxide production after hydrolysis of hydroxyurea to hydroxylamine; and (3) the nitric oxide-producing structure-activity relationships of hydroxyurea. Results from these studies should provide a better understanding of the nitric oxide donor properties of hydroxyurea and guide the development of new hydroxyurea-derived nitric oxide donors as potential sickle cell disease therapies.  相似文献   

7.
Conflicting evidence exists as to whether nitric oxide expresses damaging/inflammatory or antioxidant/anti-inflammatory properties. Data presented in this review indicate that in vitro or in vivo exposure to selected environmental or occupational agents, such as asbestos, silica, ozone or lipopolysaccharide, can result in up-regulation of inducible nitric oxide synthase by alveolar macrophages and pulmonary epithelial cells. In the case of silica exposure, evidence consistently supports a damaging/inflammatory role of nitric oxide and/or peroxynitrite in the pathogenesis of lung disease. Although conflicting data have been reported, the majority of published studies suggest that nitric oxide plays a damaging role in pulmonary injury resulting from exposure to ozone or asbestos. In contrast, most information supports an anti-inflammatory role of nitric oxide following exposure to lipopolysaccharide. Further investigation is required to elucidate fully the mechanisms involved in determining the role of nitric oxide in the initiation and progression of various pulmonary diseases.  相似文献   

8.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

9.
Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.  相似文献   

10.
Abstract

Conflicting evidence exists as to whether nitric oxide expresses damaging/inflammatory or antioxidant/anti-inflammatory properties. Data presented in this review indicate that in vitro or in vivo exposure to selected environmental or occupational agents, such as asbestos, silica, ozone or lipopolysaccharide, can result in up-regulation of inducible nitric oxide synthase by alveolar macrophages and pulmonary epithelial cells. In the case of silica exposure, evidence consistently supports a damaging/inflammatory role of nitric oxide and/or peroxynitrite in the pathogenesis of lung disease. Although conflicting data have been reported, the majority of published studies suggest that nitric oxide plays a damaging role in pulmonary injury resulting from exposure to ozone or asbestos. In contrast, most information supports an anti-inflammatory role of nitric oxide following exposure to lipopolysaccharide. Further investigation is required to elucidate fully the mechanisms involved in determining the role of nitric oxide in the initiation and progression of various pulmonary diseases.  相似文献   

11.
Nitric oxide has enigmatic qualities in inflammation. In order to appreciate the precise contributions of nitric oxide to a pathophysiological process, one must account for enzyme source, coproduction of oxidants and antioxidant defences, time, rate of nitric oxide production, cellular source, peroxynitrite formation and effects on DNA (mutagenesis/apoptosis). We contend that there is ample evidence to consider nitric oxide as a molecular aggressor in inflammation, particularly chronic inflammation. Therapeutic benefit can be achieved by inhibition of inducible nitric oxide synthase and not the donation of additional nitric oxide. Furthermore, there is growing appreciation that nitric oxide and products derived thereof, are critical components linking the increased incidence of cancer in states of chronic inflammation.  相似文献   

12.
Ischemia–reperfusion leads to increased levels at the blood–brain barrier of the multidrug efflux transporter, P-glycoprotein that provides protection to the brain by limiting access of unwanted substances. This is coincident with the production of nitric oxide. This present study using immortalized rat brain endothelial cells (GPNTs) examines whether following hypoxia-reoxygenation, nitric oxide contributes to the alterations in P-glycoprotein levels. After 6 h of hypoxia, both nitric oxide and reactive oxygen species, detected intracellularly using fluorescent monitoring dyes, were produced in the subsequent reoxygenation phase coincident with increased P-glycoprotein. The evidence that nitric oxide can directly affect P-glycoprotein expression was sought by applying S-nitroso-N-acetyl-dl-penicillamine that as shown increased the nitric oxide generation. Sodium nitroprusside, though more effective at increasing P-glycoprotein expression, appeared to produce different reactive species. Real time RT-PCR analysis revealed the predominant form of nitric oxide synthase in these cells to be endothelial, inhibition of which partially prevented the increase in P-glycoprotein during reoxygenation. These data indicate that the production of nitric oxide by endothelial nitric oxide synthase during reoxygenation can influence P-glycoprotein expression in cells of the blood-rat brain barrier, highlighting another route by which nitric oxide may protect the brain.  相似文献   

13.
Nitric oxide: comparative synthesis and signaling in animal and plant cells   总被引:21,自引:0,他引:21  
Since its identification as an endothelium-derived relaxing factor in the 1980s, nitric oxide has become the source of intensive and exciting research in animals. Nitric oxide is now considered to be a widespread signaling molecule involved in the regulation of an impressive spectrum of mammalian cellular functions. Its diverse effects have been attributed to an ability to chemically react with dioxygen and its redox forms and with specific iron- and thiol-containing proteins. Moreover, the effects of nitric oxide are dependent on the dynamic regulation of its biosynthetic enzyme nitric oxide synthase. Recently, the role of nitric oxide in plants has received much attention. Plants not only respond to atmospheric nitric oxide, but also possess the capacity to produce nitric oxide enzymatically. Initial investigations into nitric oxide functions suggested that plants use nitric oxide as a signaling molecule via pathways remarkably similar to those found in mammals. These findings complement an emerging body of evidence indicating that many signal transduction pathways are shared between plants and animals.  相似文献   

14.
Hydrogen sulfide has recently been considered to have an important role as a gasotransmitter in the cardiovascular system as well as in the central nervous system, but its action seems directly related to the presence of nitric oxide/nitric oxide-derivatives. We report here chemical evidence that emphasizes a prominent role of the hydrogen sulfide as cofactor of NO-derivatives in inducing nitric oxide release.  相似文献   

15.
Recently a novel family of putative nitric oxide synthases, with AtNOS1, the plant member implicated in NO production, has been described. Here we present experimental evidence that a mammalian ortholog of AtNOS1 protein functions in the cellular context of mitochondria. The expression data suggest that a candidate for mammalian mitochondrial nitric oxide synthase contributes to multiple physiological processes during embryogenesis, which may include roles in liver haematopoesis and bone development.  相似文献   

16.
Viral infection is one environmental factor that may contribute to the initiation of pancreatic β-cell destruction during the development of autoimmune diabetes. Picornaviruses, such as encephalomyocarditis virus (EMCV), induce a pro-inflammatory response in islets leading to local production of cytokines, such as IL-1, by resident islet leukocytes. Furthermore, IL-1 is known to stimulate β-cell expression of iNOS and production of the free radical nitric oxide. The purpose of this study was to determine whether nitric oxide contributes to the β-cell response to viral infection. We show that nitric oxide protects β-cells against virally mediated lysis by limiting EMCV replication. This protection requires low micromolar, or iNOS-derived, levels of nitric oxide. At these concentrations nitric oxide inhibits the Krebs enzyme aconitase and complex IV of the electron transport chain. Like nitric oxide, pharmacological inhibition of mitochondrial oxidative metabolism attenuates EMCV-mediated β-cell lysis by inhibiting viral replication. These findings provide novel evidence that cytokine signaling in β-cells functions to limit viral replication and subsequent β-cell lysis by attenuating mitochondrial oxidative metabolism in a nitric oxide–dependent manner.  相似文献   

17.
During the initial autoimmune response in type 1 diabetes, islets are exposed to a damaging mix of pro-inflammatory molecules that stimulate the production of nitric oxide by β-cells. Nitric oxide causes extensive but reversible cellular damage. In response to nitric oxide, the cell activates pathways for functional recovery and adaptation as well as pathways that direct β-cell death. The molecular events that dictate cellular fate following nitric oxide-induced damage are currently unknown. In this study, we provide evidence that AMPK plays a primary role controlling the response of β-cells to nitric oxide-induced damage. AMPK is transiently activated by nitric oxide in insulinoma cells and rat islets following IL-1 treatment or by the exogenous addition of nitric oxide. Active AMPK promotes the functional recovery of β-cell oxidative metabolism and abrogates the induction of pathways that mediate cell death such as caspase-3 activation following exposure to nitric oxide. Overall, these data show that nitric oxide activates AMPK and that active AMPK suppresses apoptotic signaling allowing the β-cell to recover from nitric oxide-mediated cellular stress.  相似文献   

18.
Despite the existence of a large body of information on the subject, the mechanisms of morphine tolerance and dependence are not yet fully understood. There is substantial evidence indicating that mitogen-activated protein kinase (MAPK), a family including extracellular signal-regulated protein kinase, p38 MAPK, and c-Jun N-terminal kinase, can be activated by chronic morphine treatment in the central and peripheral nervous systems and that application of a MAPK inhibitor reduces morphine tolerance and dependence. While the exact mechanism is not completely understood, recent evidence suggests that the activation of MAPK induced by long-term morphine exposure may participate in tolerance and dependence by regulating the downstream targets, such as calcitonin gene-related peptide, substance P, nitric oxide, transient receptor potential vanilloid 1, and proinflammatory cytokines. In this review, we focus on the current understanding of the role of MAPK signaling pathways in morphine tolerance and dependence.  相似文献   

19.
When neural cells are exposed to paraquat, nitric oxide generation increases primarily due to an increase in the expression of the inducible isoform of nitric oxide synthase. The nitric oxide generated has controversial actions in paraquat exposure, as both protective and harmful effects have been described previously. While the actions mediated by nitric oxide in neural cells have been well described, there is evidence that nitric oxide may also be an important modulator of the expression of several genes during paraquat exposure. To better understand the actions of nitric oxide and its potential role in paraquat-induced gene expression, we examined changes in GCH1, ARG1, ARG2, NOS1, NOS2, NOS3, NOSTRIN, NOSIP, NOS1AP, RASD1, DYNLL1, GUCY1A3, DDAH1, DDAH2 and CYGB genes whose expression is controlled by or involved in signaling by the second messenger nitric oxide, in rat mesencephalic cells after 3, 6, 12 and 24 h of paraquat exposure. A qPCR strategy targeting these genes was developed using a SYBR green I-based method. The mRNA levels of all the genes studied were differentially regulated during exposure. These results demonstrate that nitric oxide-related genes are regulated following paraquat exposure of mesencephalic cells and provide the basis for further studies exploring the physiological and functional significance of nitric oxide-sensitive genes in paraquat-mediated neurotoxicity.  相似文献   

20.
Unraveling the biological significance of nitric oxide   总被引:4,自引:0,他引:4  
Independent investigations into the biochemical changes and cytostatic properties induced in immunostimulated macrophages and studies involving the identity and mechanism of action of endothelium-derived relaxing factor led to the finding of a new metabolic pathway which converts L-arginine to nitric oxide and citrulline. The pathway has since been reported in a number of additional cell types including cells in the central nervous system (CNS). In the endothelium and CNS nitric oxide is acting as a signaling agent with the evidence supporting activation of the enzyme guanylate cyclase in the target cell. Nitric oxide is toxic and evidence supports a cytostatic/cytotoxic function as the primary action of macrophage-derived nitric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号