共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Phosphorylation of highly purified growth hormone receptors by a growth hormone receptor-associated tyrosine kinase 总被引:5,自引:0,他引:5
C Carter-Su J R Stubbart X Y Wang S E Stred L S Argetsinger J A Shafer 《The Journal of biological chemistry》1989,264(31):18654-18661
We have shown previously that growth hormone (GH) promotes the phosphorylation of its receptor on tyrosyl residues (Foster, C. M., Shafer, J. A., Rozsa, F. W., Wang, X., Lewis, S. D., Renken, D. A., Natale, J. E., Schwartz, J., and Carter-Su, C. (1988) Biochemistry 27, 326-334). In the present study, we investigated the possibility that a tyrosine kinase is specifically associated with the GH receptor. GH-receptor complexes were first partially purified from GH-treated 3T3-F442A fibroblasts, a GH-responsive cell, by immunoprecipitation using anti-GH antiserum. 35S-Labeled proteins of Mr = 105,000-125,000 were observed in the immunoprecipitate from GH-treated cells labeled metabolically with 35S-amino-acids. These proteins were not observed in immunoprecipitates from cells not exposed to GH or when non-immune serum replaced the anti-GH antiserum, consistent with the proteins being GH receptors. GH receptors appeared to be phosphorylated, as evidenced by the presence of 32P-labeled bands, comigrating with the 105-125 kDa 35S-labeled proteins, in the immunoprecipitate of GH-treated cells labeled metabolically with [32P]Pi. When partially purified GH receptor preparation was incubated with [gamma-32P]ATP (7-15 microM) for 10 min at 30 degrees C in the presence of MnCl2, a protein of Mr = 121,000 was phosphorylated exclusively on tyrosyl residues. As expected for the GH receptor, this protein was not observed in immunoprecipitates when cells had not been treated with GH nor when non-immune serum replaced the anti-GH antiserum. GH-receptor complexes were also purified to near homogeneity by sequential immunoprecipitation with phosphotyrosyl-binding antibody followed by anti-GH antiserum. When cells were labeled metabolically with 35S-amino acids, the 35S label migrated almost exclusively as an Mr = 105,000-125,000 protein. This protein also incorporated 32P into tyrosyl residues when incubated in solution with [gamma-32P]ATP. These results show that highly purified GH receptor preparations undergo tyrosyl phosphorylation, suggesting that either the GH receptor itself is a tyrosine kinase or is tightly associated with a tyrosine kinase. 相似文献
9.
Regulation of fatty acid and carbohydrate metabolism by insulin, growth hormone and tri-iodothyronine in hepatocyte cultures from normal and hypophysectomized rats. 总被引:1,自引:0,他引:1 下载免费PDF全文
The interactions of insulin, growth hormone (somatotropin) and tri-iodothyronine (T3) in the long-term (24 h) regulation of fatty acid and carbohydrate metabolism were studied in hepatocyte primary cultures isolated from normal or hypophysectomized Sprague-Dawley rats. Hepatocytes from hypophysectomized rats had similar rates of palmitate metabolism, but lower rates of ketogenesis, than hepatocytes from normal rats. They also had a lower endogenous triacylglycerol content and lower activities of NADP-linked dehydrogenases than did cells from normal rats. The inhibitions of ketogenesis and gluconeogenesis by insulin were more marked in hepatocytes from hypophysectomized than from normal rats. Insulin caused a 7-10-fold increase in cellular glycogen in hepatocytes from hypophysectomized rats, compared with a 2-3-fold increase in cells from normal rats, and it increased cellular triacylglycerol by 65% in cells from hypophysectomized rats, compared with 11% in cells from normal rats. In hepatocytes from hypophysectomized rats, growth hormone and T3 increased ketogenesis both separately and in combination (12% and 23% respectively; P less than 0.05), whereas in hepatocytes from normal rats only the combination of growth hormone and T3 caused a significant increase in ketogenesis. In cells from hypophysectomized rats, T3 and growth hormone had different effects on carbohydrate metabolism: T3, but not growth hormone, potentiated the anti-gluconeogenic and glycogenic effects of insulin. It is concluded that hypophysectomy increases the responsiveness of hepatocytes to insulin, growth hormone and T3, and that growth hormone and T3 regulate fatty acid and carbohydrate metabolism by different mechanisms. 相似文献
10.
11.
A Ba?sset P Montastruc 《Comptes rendus des séances de la Société de biologie et de ses filiales》1978,172(1):196-199
In the dog under anesthesia by pentobarbital, the acute hypertension by depressor buffer nerves section does not develop after adrenalectomy, hypophysectomy or thyro?dectomy. But this type of acute pressor response does appear normal in the dog parathyro?dectomized, splanchnicectomized or with hypothalamic diabetes insipidus. 相似文献
12.
13.
D B King C G Scanes 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,182(2):201-207
Body weight gain and shank-toe growth during a 26-day treatment period following hypophysectomy were 55 and 46%, respectively, of control values, but the body weight gain was unaffected and bone growth only slightly reduced when the hypophysectomized chickens were fed a low dose of corticosterone (5 ppm). Bovine growth hormone (0.5 mg GH/kg body wt/day for 18 days) enhanced body weight gain and shank-toe length increase (an estimate of bone growth) by 46 and 33%, respectively, compared to the growth of hypophysectomized chickens receiving only corticosterone. These same endpoints were increased approximately 24% after ovine growth hormone treatment in hypophysectomized chickens not receiving corticosterone. Body weight gain during 18 days of treatment with bovine prolactin (0.5 mg PRL/kg/day) was 27% greater than the value for corticosterone-treated hypophysectomized chickens, but bone growth was unaffected. The mammalian GH preparations increased heart weight of the hypophysectomized chickens (25-29%), but pectoralis muscle weight was unaffected. GH treatment enhanced thymal weights by 71% in corticosterone-treated hypophysectomized chickens, and by 93% in hypophysectomized animals not receiving corticosterone. GH had no significant effect on bursal weights, and PRL had no effect on either of these lymphoid organ weights in corticosterone-treated hypophysectomized chickens. GH increased liver and adipose tissue weights considerably more than the large increases that followed treatment of hypophysectomized chickens with corticosterone alone (69 and 126% greater, respectively), but had no effect on these endpoints in hypophysectomized chickens not receiving corticosterone. PRL also greatly increased liver and adipose tissue weights in corticosterone-treated hypophysectomized chickens (79 and 75%, respectively). These results provide evidence that mammalian GH enhances body weight gain, bone growth, and the growth of several organs in the hypophysectomized chicken. Mammalian PRL increased body weight gain, liver weight, and adipose tissue weight in corticosterone-treated hypophysectomized chickens, but did not influence bone growth or the weights of the heart, pectoralis, thymi, or bursa. 相似文献
14.
15.
16.
17.
18.
19.
20.
Appiagyei-Dankah Y Tapiador CD Evans JF Castro-Magana M Aloia JF Yeh JK 《American journal of physiology. Endocrinology and metabolism》2003,284(3):E566-E573
The hypophysectomized rat has been used as a model to study the effects of growth hormone deficiency on bone. Here, we have investigated the influence of growth hormone administration to hypophysectomized rats (HX) for 6 wk on accumulation of triglycerides in bone marrow and on the differentiation of primary marrow stromal cells into adipocytes under in vitro conditions. We found that hypophysectomy significantly increased triglyceride concentration in bone marrow, which was attenuated by growth hormone administration. Primary bone marrow stromal cells derived from HX rats also had more adipocytes at confluence compared with growth hormone-treated hypophysectomized (GH) rats. When stimulated with 3-isobutyl-1-methylxanthine plus dexamethasone (IBMX-Dex), preadipocyte colony counts increased more significantly in GH rats. Markers of adipocyte differentiation were higher in HX than in control or GH rats at confluence. However, after stimulation with IBMX-Dex, increased expression of markers was seen in GH compared with HX rats. In conclusion, growth hormone administration to hypophysectomized rats attenuated triglyceride accumulation in bone marrow and inhibited the differentiation of stromal cells into adipocytes in vitro. 相似文献