首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A genomic library of Streptococcus sanguis, strain G9B, was constructed and expressed in Escherichia coli using a lambda gt11 expression vector. The amplified library was probed with polyclonal anti-G9B IgG and 13 antigen-positive clones were isolated. A lysate of one clone, designated PP39, absorbed the adhesion-inhibitory activity of anti-G9B IgG. This clone contained an insert of approximately 2000 bp and expressed unique 200 and 53 kDa proteins that reacted with monospecific anti-adhesin antibody. The 200 kDa protein also reacted with anti-beta-galactosidase IgG, indicating that it is a fusion protein of which 84 kDa represents the streptococcal adhesin. The 84 and 53 kDa proteins are similar in size to the major polypeptides in a streptococcal antigen complex which is associated with the adhesion of G9B to saliva-coated hydroxyapatite. The 53 kDa fragment may result from post-translational cleavage of the recombinant polypeptide.  相似文献   

2.
3.
The adhesion of Streptococcus sanguis to hydroxylapatite is a process involving several adhesins and receptors. Binding isotherms and Scatchard plots of the adhesion suggest that cooperative interactions occur at low cell densities. It was found that sulfolane, a hydrophobic-bond diluent, was capable of inhibiting the cooperative adhesion of S. sanguis to saliva-coated hydroxylapatite beads. Sodium thiocyanate, a chaotropic agent, inhibited not only cooperative adhesion, but also the adhesion thought to result from noncooperative interactions. It is suggested that strong chaotropic agents may not only inhibit adhesin-receptor complexes, but also may influence the secondary/tertiary structures of interacting species.  相似文献   

4.
Abstract Pure cultures of Streptococcus mutans NCTC 10499 and Streptococcus sanguis ATCC10556 were grown in a glucose-limited chemostat under varying concentrations of oxygen in the gas phase. Both streptococci consumed large amounts of oxygen by the partial oxidation of sugars, thus maintaining an anaerobic environment. With increasing oxygen concentrations the degradation products from glucose become more oxidized. Ethanol gradually disappeared from the culture fluid while the acetate concentration increased. In the case of S. sanguis , the products became even more oxidized at higher oxygen concentrations, and carbon dioxide was formed instead of formate. Sudden increase in the oxygen concentration in the gas phase caused elevated oxygen tensions in the cultures, which led to a decrease in the growth rate of the streptococci.  相似文献   

5.
Aeromonas hydrophila, an important pathogen in fish, is believed to cause diseases by adhesive and enterotoxic mechanisms. The adhesion is a prerequisite for successful invasion. In this study, the gene of a 43 kDa major adhesin (designated as AHA1) was cloned and expressed. Nucleotide sequence analysis of AHA1 revealed an open reading frame encoding a polypeptide of 373 amino acids with a 20-amino-acid putative signal peptide (molecular weight 40,737 Da). The amino acid sequences of Aha1p showed a very high homology with the other two outer membrane proteins of A. hydrophila. Using the T-5 expression system, this major adhesin Aha1p was expressed in Escherichia coli. The purified recombinant adhesin could competitively inhibit A. hydrophila from invading fish epithelial cells in vitro. Western-blot analysis showed that this major adhesin is a very conserved antigen among various strains of Aeromonas. When used to immunise blue gourami, the recombinant adhesin could confer significant protection to fish against experimental A. hydrophila challenge.  相似文献   

6.
Abstract The heterologous expression of a cloned endoglucanase gene ( endA ) from the ruminai bacterium Ruminococcus flavefaciens 17 was demonstrated in the Streptococcus species S. bovis JB1 and S. sanguis DLL The endA gene was introduced into S. bovis and S. sanguis using the Escherichia coli/Streptococcus shuttle vector pVA838. Expression of the gene was detected by clearing zones around the recombinant colonies on agar plates containing carboxymethylcellulose stained with Congo red. S. bovis JB1 containing the endA gene was capable of utilizing cellotetraose at a faster rate than the parent strain. This is the first demonstration that Streptococcus species can express a gene from a Ruminococcus flavefaciens strain.  相似文献   

7.
Protein Z-dependent protease inhibitor (ZPI) is a recently identified member of the serpin superfamily that functions as a cofactor-dependent regulator of blood coagulation factors Xa and XIa. Here we provide evidence that, in addition to the established cofactors, protein Z, lipid, and calcium, heparin is an important cofactor of ZPI anticoagulant function. Heparin produced 20-100-fold accelerations of ZPI reactions with factor Xa and factor XIa to yield second order rate constants approaching the physiologically significant diffusion limit (k(a) = 10(6) to 10(7) M(-1) s(-1)). The dependence of heparin accelerating effects on heparin concentration was bell-shaped for ZPI reactions with both factors Xa and XIa, consistent with a template-bridging mechanism of heparin rate enhancement. Maximal accelerations of ZPI-factor Xa reactions required calcium, which augmented the heparin acceleration by relieving Gla domain inhibition as previously shown for heparin bridging of the antithrombin-factor Xa reaction. Heparin acceleration of both ZPI-protease reactions was optimal at heparin concentrations and heparin chain lengths comparable with those that produce physiologically significant rate enhancements of other serpin-protease reactions. Protein Z binding to ZPI minimally affected heparin rate enhancements, indicating that heparin binds to a distinct site on ZPI and activates ZPI in its physiologically relevant complex with protein Z. Taken together, these results suggest that whereas protein Z, lipid, and calcium cofactors promote ZPI inhibition of membrane-associated factor Xa, heparin activates ZPI to inhibit free factor Xa as well as factor XIa and therefore may play a physiologically and pharmacologically important role in ZPI anticoagulant function.  相似文献   

8.
Selected strains of Candida albicans were examined to reveal the surface antigenicity and biochemical nature of major cell wall proteins that also were shown to serve as cellular adhesins on human buccal epithelial cells. Confirmation of the adhesive properties of these cells was made by scanning electron microscopy and immunofluorescence microscopy. Particular attention was directed at the clinical isolate KM-302. By means of indirect immunofluorescence staining, the KM-302 blastoconidia absorbed rabbit anti-C. albicans ATCC-32354 serum, revealing specific localization of surface antigens on germ tubes and pseudohyphae. Extracellular polymeric material and the cell wall extract of C. albicans KM-302 blastoconidia were found to contain a major surface antigen of 49 kDa that exhibited 42% adhesion inhibition in vitro. Of considerable significance is that immunogold localization by electron microscopy showed the antigen to be almost exclusively cell wall bound. This major antigen, identified in affinity and gel filtration chromatography fractions, was composed of 4% carbohydrate and 95.7% protein and had an isoelectric point of 6.1. The major antigen also showed a high level of similarity with that of C. albicans strain SC-5314 inasmuch as the major antigen of that strain had carbohydrate and protein compositions of 4 and 95.5%, respectively. Both of these strains also possessed the same percent of adhesion inhibition of human buccal epithelial cells.Abbreviations BECs buccal epithelial cells - CWE cell wall extract - EPP extracellular polymers and proteins - FITC fluorescein isothiocyanate - mAg major antigen - OD 600 optical density at 600 nm - PBS phosphate buffered saline - TEM transmission electron microscopy - YNB yeast nitrogen base  相似文献   

9.
Guy's 13 is a mouse monoclonal antibody that specifically recognizes the major cell-surface adhesion protein SA I/II of Streptococcus mutans, one of the major causative agents of dental caries. Passive immunization with Guy's 13 prevents bacterial colonization in humans. To help elucidate the mechanism of prevention of colonization conferred by this antibody, the SA I/II epitope recognized by Guy's 13 was investigated. It was previously established that the epitope is conformational, being assembled from two non-contiguous regions of SA I/II. In the current study, using recombinant fragments of SA I/II and, ultimately, synthetic peptides, the discontinuous epitope was localized to residues 170-218 and 956-969. This work describes the mapping of a novel discontinuous epitope that requires an interaction between each determinant in order for epitope assembly and recognition by antibody to take place. Guy's 13 binds to the assembled epitope but not to these individual epitope fragments. The assembled epitope results from the interaction between the individual antigenic determinants and can be formed by mixing together determinants present on separate polypeptide chains. The data are consistent with one of the epitope fragments adopting a polyproline II-like helical conformation.  相似文献   

10.
Nacken W  Kerkhoff C 《FEBS letters》2007,581(26):5127-5130
S100A8, S100A9 and S100A12 proteins are associated with inflammation and tissue remodelling, both processes known to be associated with high protease activity. Here, we report that homo-oligomeric forms of S100A8 and S100A9 are readily degraded by proteases, but that the preferred hetero-oligomeric S100A8/A9 complex displays a high resistance even against proteinase K degradation. S100A12 is not as protease resistant as the S100A8/A9 complex. Since specific functions have been assigned to the homo- and heterooligomeric forms of the S100A8 and A9 proteins, this finding may point to a post-translational level of regulation of the various functions of these proteins in inflammation and tissue remodelling.  相似文献   

11.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

12.
The contribution of human parotid (Par) and submandibular/sublingual (SM/SL) saliva and of the human whole salivary mucin fraction (HWSM) to saliva-induced bacterial aggregation was studied for S. sanguis C476, S. oralis I581, and S. rattus HG 59. The mucous SM/SL saliva showed a much higher aggregation potency towards the S. sanguis and S. oralis strain than did the serous Par saliva. The SM/SL saliva-induced aggregation was observed after 30 min, at 60 min followed by the Par saliva-induced aggregation, and showed a 4-fold higher aggregation titer of 128 for S. sanguis, and an 8-fold higher titer of 516 for S. oralis. In contrast, the Par saliva showed a slightly higher aggregation activity than the SM/SL saliva towards S. rattus as judged by a twofold higher titer of 64. Morphologically, however, the SM/SL saliva-induced aggregation of S. rattus was far more pronounced as was also found for S. sanguis. Finally, the HWSM-induced aggregation showed a 4 to 8-fold higher titer than the originating salivary source, measuring 2048 for S. oralis and 128 for S. rattus. Moreover, no difference was observed in aggregation activity between the HWSM from whole saliva of a blood group O donor and the HWSM from SM/SL saliva of a blood group A donor. All the data point to an important, though not exclusive role of the human salivary mucin fraction in the saliva-induced aggregation of these strains.  相似文献   

13.
Streptococcus pneumoniae (pneumococcus) remains a significant health threat worldwide, especially to the young and old. While some of the biomolecules involved in pneumococcal pathogenesis are known and understood in mechanistic terms, little is known about the molecular details of bacterium/host interactions. We report here the solution structure of the 'repeated' adhesion domains (domains R1 and R2) of the principal pneumococcal adhesin, choline binding protein A (CbpA). Further, we provide insights into the mechanism by which CbpA binds its human receptor, polymeric immunoglobulin receptor (pIgR). The R domains, comprised of 12 imperfect copies of the leucine zipper heptad motif, adopt a unique 3-alpha-helix, raft-like structure. Each pair of alpha-helices is antiparallel and conserved residues in the loop between Helices 1 and 2 exhibit a novel 'tyrosine fork' structure that is involved in binding pIgR. This and other structural features that we show are conserved in most pneumococcal strains appear to generally play an important role in bacterial adhesion to pIgR. Interestingly, pneumococcus is the only bacterium known to adhere to and invade human cells by binding to pIgR.  相似文献   

14.
Mammalian cells contain two large proteolytic complexes, the 650-kDa proteasome (or multicatalytic protease) and the 1500-kDa (26 S) Ubiquitin-conjugate-degrading enzyme. Since the proteasome is also required for the ATP-dependent degradation of ubiquitinated proteins, we tested whether it may be a component of the larger complex. The proteasome normally is soluble in 38% ammonium sulfate. However, after preincubation of reticulocyte extracts with ATP, several proteasome activities appeared in the 38% ammonium sulfate pellet, including the ability to degrade hydrophobic peptides and 14C-casein. Also, following preincubation with ATP, the precipitable fraction could degrade 125I-lysozyme-ubiquitin (Ub) conjugates. The activities were not present after incubation without ATP or with a nonmetabolizable ATP analog. Nondenaturing gel electrophoresis indicated the ATP-dependent appearance of a new band which degraded proteasome substrates, and reacted with an anti-proteasome monoclonal antibody on Western blot. This new band appeared larger than the proteasome and migrated similarly to the larger Ub-conjugate-degrading complex. The formation of the larger complex required factor(s) present in the 38% ammonium sulfate pellet and either the 40-80% fraction or the purified proteasome from reticulocytes or muscle. After complex formation, hydrolysis of Ub-protein conjugates and also the non-ubiquitinated substrate, casein, was stimulated severalfold by ATP, but non-metabolizable ATP analogs had little or no effect. Thus, the proteasome corresponds to component CF-3 of Ganoth et al. (Ganoth, D., Leshinisky, E., Eytan, E., and Hershkov, A. (1989) J. Biol. Chem. 263 12412-12419) and undergoes an energy-dependent association with other factors to form the 1500-kDa, ATP-requiring proteolytic complex.  相似文献   

15.
Summary Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both endogenous -amylase 2 and subtilisin (ASI) on chromosome 2, two chymotrypsin/subtilisin inhibitors (CI-1 and CI-2) on chromosome 5 (long arm) and the major trypsin inhibitor (TI-1) on chromosome 3.  相似文献   

16.
The synthesis and proteolysis of the spore coat proteins, SpoIVA and YrbA, of Bacillus subtilis were analyzed using antisera. Almost no intact full-length proteins of either type were extracted from wild-type spores, while yabG mutant spores contained intact SpoIVA and YrbA proteins. We purified recombinant YrbA and YabG proteins from Escherichia coli transformants and found that YrbA was cleaved to the smaller moiety in the presence of YabG in vitro. These observations indicate that YabG is a protease involved in the proteolysis and maturation of SpoIVA and YrbA proteins, conserved with the cortex and/or coat assembly by B. subtilis.  相似文献   

17.
Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ~90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ~180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.  相似文献   

18.
The cores of the microvilli present on intestinal epithelial cells are currently the only microfilament arrangement which can be isolated ultrastructurally intact and in sufficient quantities for biochemical analysis. We have isolated and characterized villin, a major protein of the microvillus core. Using villin's ability to bind very tightly to immobilized monomeric actin in a calcium-dependent manner, we have developed a method for its rapid purification by affinity chromatography on G actin, which itself was bound to immobilized pancreatic deoxyribonuclease I (DNAase I). The villin-G actin complex on DNAase I is resistant to high ionic strength, and villin, but not actin, is released when the calcium concentration is less than 106 M. Purified villin behaves as a globular monomeric protein of molecular weight 95,000, and is free of carbohydrate. Villin also interacts with F actin. In the absence of calcium, villin cross-links F actin having the properties of an F actin bundling or gelation factor. In the presence of calcium (>10?7 M), villin apparently restricts the polymerization of actin to short filaments which cannot be readily sedimented. The properties of villin are not compatible with its previously suggested role as the cross-filament between the microvillus microfilament core and the plasma membrane, but rather indicate a function as a calcium-dependent F actin-bundling protein. The role of villin is discussed in terms of the other protein components of the microvillus core and in relation to recently described calcium-dependent gelation factors.  相似文献   

19.
Germination of mung beans (Phaseolus aureus, Roxb.) is accompanied by an increase in the activity of the endopeptidase involved in storage protein metabolism. Enzyme activity in the cotyledons increases 25-fold during the first 5 days of germination. The cotyledons also contain inhibitory activity against the endopeptidase, and this inhibitory activity declines during germination, suggesting that inhibitors may play a role in regulating the activity of the endopeptidase.  相似文献   

20.
Molybdoenzymes contain a molybdenum cofactor in their active site to catalyze various redox reactions in all domains of life. To decipher crucial steps during their biogenesis, the TorA molybdoenzyme of Escherichia coli had played a major role to understand molybdoenzyme maturation process driven by specific chaperones. TorD, the specific chaperone of TorA, is also involved in TorA protection. Here, we show that immature TorA (apoTorA) is degraded in vivo and in vitro by the Lon protease. Lon interacts with apoTorA but not with holoTorA. Lon and TorD compete for apoTorA binding but TorD binding protects apoTorA against degradation. Lon is the first protease shown to eliminate an immature or misfolded molybdoenzyme probably by targeting its inactive catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号