首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agonistic behavior between heterospecifics, in which individuals of one species attack another, may cause a subordinate species to shift resource or habitat use. Subsequent evolutionary responses to selection may mimic shifts expected under ecological character displacement, but with no role played by exploitative competition. Alternatively, aggressive behavior can evolve when fitness is improved by excluding members of a coexisting species from a defendable resource through interference. We tested whether heterospecific agonistic behavior has evolved in brook stickleback (Culaea inconstans) by comparing replicate allopatric populations to those sympatric with ninespine stickleback (Pungitius pungitius). We also tested for heritable variation in heterospecific aggressive behavior by rearing family groups in a common environment. Allopatric populations of brook stickleback were more aggressive than ninespine stickleback, suggesting that pre-existing aggression in brook stickleback contributed to niche shifts by ninespine stickleback. In addition, sympatric adult brook stickleback were more aggressive toward ninespine stickleback than brook stickleback from allopatric populations. Overt heterospecific aggressive behaviors were heritable, and aggression in juvenile brook stickleback increased with age in sympatric but not in allopatric populations reared in a common environment. Brook stickleback have evolved increased aggression when they coexist with ninespine stickleback. These stickleback communities have been structured by both evolved and pre-existing variation in heterospecific aggressive behavior in brook stickleback.  相似文献   

2.
Ecological character displacement (ECD) provides opportunities to test how resource competition generates diversifying selection that results in adaptive divergence. We quantify an association between phenotypic and ecological divergence between two similar small fishes, brook (Culaea inconstans) and ninespine (Pungitius pungitius) sticklebacks, in replicate northern Ontario lakes, Canada. The two species partition resources and habitat, where they coexist, and brooks that coexist with ninespines are more benthically specialized in body form and diet than brooks from local allopatric populations. Here we test various explanations for this pattern. Chance is unlikely to have been the primary cause because divergence is replicated in three separate populations. Preliminary comparisons indicate that resource availability and a variety of abiotic ecological conditions are generally similar between sympatric and allopatric sites, and so do not readily account for the divergence. Biased colonization or extinction is less likely to account for the divergence because character values in sympatry tend to exceed those in allopatry, as expected if they have repeatedly evolved under diversifying selection. Recent studies have also demonstrated that these two species compete, and that competitive effects are more severe for allopatric compared to sympatric brook forms, as predicted if divergence reflects the ghost of competition past. Ongoing studies indicate heritable variation in this system. Our results suggest that even small amounts of character shifts can influence competition and hence relative fitness, further implicating a role for ECD in the evolution of biodiversity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

4.
Character shifts in the defensive armor of sympatric sticklebacks   总被引:6,自引:0,他引:6  
Natural enemies may contribute to the morphological divergence of sympatric species, yet their role has received little attention to date. We tested for character shifts in defensive armor of sympatric threespine sticklebacks (Gasterosteus aculeatus complex) previously shown to exhibit ecological character displacement in traits related to resource use. We scored five defensive armor traits in sympatric benthic and limnetic stickleback species from southwestern British Columbia and compared them with the same traits in nearby allopatric populations in the presence of the same predatory fish (Oncorhynchus sp.). This approach is analogous to tests of ecological character displacement that compare trophic traits of sympatric and allopatric species in the presence of the same community of resource types. Three patterns consistent with character displacement in defensive armor were found. First, limnetics in different lakes had consistently more armor than sympatric benthics. Second, the average amount of armor, averaged over both species, was reduced in sympatry compared to allopatric populations. This reduction was almost entirely the result of shifts by benthic species, whereas armor in limnetics was more similar to that in allopatric populations. Third, differences between sympatric benthics and limnetics in total armor were greater than expected from comparisons with allopatric populations. We interpret these patterns as the result of differences in habitat-specific predation regimes accompanying ecological character displacement and indirect interactions between sympatric stickleback species mediated by their top predators. These results suggest that predation may facilitate, rather than hinder, the process of divergence in sympatry.  相似文献   

5.
Behaviors toward heterospecifics and conspecifics may be correlated because of shared mechanisms of expression in both social contexts (nonadaptive covariation) or because correlational selection favors adaptive covariation. We evaluated these hypotheses by comparing behavior toward conspecifics and heterospecifics in brook stickleback (Culaea inconstans) from three populations sympatric with and three allopatric from a competitor, the ninespine stickleback (Pungitius pungitius). Behavioral traits were classified into three multivariate components: overt aggression, sociability, and activity. The correlation of behavior between social contexts for both overt aggression and activity varied among populations in a way unrelated to sympatry with ninespine stickleback, while mean aggression was reduced in sympatry. Correlations in allopatric populations suggest that overt aggression and activity may genetically covary between social contexts for nonadaptive reasons. Sociability was rarely correlated in allopatry but was consistently correlated in sympatry despite reduced mean sociability, suggesting that correlational selection may favor a sociability syndrome in brook stickleback when they coexist with ninespine stickleback. Thus, interspecific competition may impose diversifying selection on behavior among populations, although the causes of correlated behavior toward conspecifics and heterospecifics and whether it can evolve in one social context independent of the other may depend on the type of behavior.  相似文献   

6.
1. The competitive interactions of closely related species have long been considered important determinants of community composition and a major cause of phenotypic diversification. However, while patterns such as character displacement are well documented, less is known about how local adaptation influences diversifying selection from interspecific competition. 2. We examined body size and head shape variation among allopatric and sympatric populations of two salamander species, the widespread Plethodon cinereus and the geographically restricted P. nettingi. We quantified morphology from 724 individuals from 20 geographical localities throughout the range of P. nettingi. 3. Plethodon nettingi was more robust in cranial morphology relative to P. cinereus, and sympatric localities were more robust relative to allopatric localities. Additionally, there was significantly greater sympatric head shape divergence between species relative to allopatric communities, and sympatric localities of P. cinereus exhibited greater morphological variation than sympatric P. nettingi. 4. The sympatric morphological divergence and increase in cranial robustness of one species (P. nettingi) were similar to observations in other Plethodon communities, and were consistent with the hypothesis of interspecific competition. These findings suggest that interspecific competition in Plethodon may play an important role in phenotypic diversification in this group. 5. The increase in among-population variance in sympatric P. cinereus suggests a species-specific response to divergent natural selection that is influenced in part by other factors. We hypothesize that enhanced morphological flexibility and ecological tolerance allow P. cinereus to more rapidly adapt to local environmental conditions, and initial differences among populations have allowed the evolutionary response of P. cinereus to vary across replicate sympatric locations, resulting in distinct evolutionary trajectories of morphological change.  相似文献   

7.
Ecological character displacement—trait evolution stemming from selection to lessen resource competition between species—is most often inferred from a pattern in which species differ in resource-use traits in sympatry but not in allopatry, and in which sympatric populations within each species differ from conspecific allopatric populations. Yet, without information on population history, the presence of a divergent phenotype in multiple sympatric populations does not necessarily imply that there has been repeated evolution of character displacement. Instead, such a pattern may arise if there has been character displacement in a single ancestral population, followed by gene flow carrying the divergent phenotype into multiple, derived, sympatric populations. Here, we evaluate the likelihood of such historical events versus ongoing ecological selection in generating divergence in trophic morphology between multiple populations of spadefoot toad (Spea multiplicata) tadpoles that are in sympatry with a heterospecific and those that are in allopatry. We present both phylogenetic and population genetic evidence indicating that the same divergent trait, which minimizes resource competition with the heterospecific, has arisen independently in multiple sympatric populations. These data, therefore, provide strong indirect support for competition''s role in divergent trait evolution.  相似文献   

8.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

9.
Breeding male ninespine sticklebacks, Pungilius pungitius , are highly aggressive toward juvenile brook charr. Salvelinus fontinalis , in the Matamek River, Québec. Field observations revealed that such aggression was always initiated by the sticklebacks and only if the charr approached their nests or free-swimming fry. There was considerable overlap in diet in August, but not in June and July, suggesting competition for food is possible under some circumstances.
In laboratory stream tanks, we compared frequency of intraspecific and interspecific aggression of single and mixed species groups over a range of densities. There was no simple relationship between aggression and density for either species, although significant differences in aggression occurred among fish in some of the different density conditions.  相似文献   

10.
Reproductive isolation can evolve between species as a byproduct of adaptation to different niches, through reinforcement, and by direct selection on mating preferences. We investigated the potential role of direct selection in the reproductive isolation between sympatric species of threespine sticklebacks. Each sympatric pair consists of a small-bodied limnetic species and large-bodied benthic species. We compared the mate preferences and courtship behavior of males from one sympatric limnetic population and two allopatric populations. We used limnetic-like allopatric populations to control for the effects of ecological character displacement and adaptation to different niches on mate preferences. The sympatric limnetic males preferred the small limnetic females, whereas the allopatric limnetic-like males preferred the large benthic females, suggesting that adaptation to the limnetic niche does not automatically confer a preference for small limnetic females. This reproductive character displacement of male preference is consistent with the predictions of both reinforcement and direct selection on mate preferences. To test for direct selection, we assessed a prediction of one proposed mechanism: predation by benthic females on eggs guarded by limnetic males. The allopatric males come from populations in which there is no egg predation. Sympatric limnetic males were more aggressive toward benthic females than toward limnetic females, whereas the allopatric limnetic-like males did not treat the two types of females differently. The contrast in male behavior suggests that egg predation has shaped male preferences. Direct selection is potentially more effective than indirect selection via reinforcement, and it is likely that it has been important in building up reproductive isolation between limnetic and benthic sticklebacks.  相似文献   

11.
Brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) have been widely introduced outside their respective ranges within North America causing declines and displacement of native trout. Yet, successful coexistence of native and non-native trout has received little attention. Here we evaluated the effect of introduced brook trout on the size and density of native redband trout in two invaded sub-basins in southeastern Oregon. In a multi-year study, we investigated whether habitat and fish communities differed between streams and stream reaches where redband trout were allopatric versus where redband trout were sympatric with brook trout. We hypothesized that redband trout would be less dense and have smaller total length in sympatry with brook trout than in allopatry, but that total trout density would not differ. We investigated whether differences in habitat existed between sympatric and allopatric locations that would indicate differentiation in site level habitat preferences for each trout species. We found that sympatric locations had more wood but similar fish community structure. Mean length and densities of redband trout were higher at allopatric locations. However, in most years at sympatric locations total trout density was twice that of allopatric redband trout sites. Using comparable data from an eastern United States system where brook trout are native, sympatric sites had lower densities of brook trout; however, total trout density did not differ. We conclude that invading trout negatively impact native trout densities; but in southeastern Oregon system the negative impact is minimized.  相似文献   

12.
Selection on Arctic charr generated by competition from brown trout   总被引:4,自引:0,他引:4  
We experimentally explored population‐ and individual‐level effects on Arctic charr (Salvelinus alpinus) resulting from resource competition with its common European competitor, the brown trout (Salmo trutta). At the population level, we compared performance of the two species in their natural sympatric state with that of Arctic charr in allopatry. At the individual level, we established selection gradients for morphological traits of Arctic charr in allopatric and in sympatric conditions. We found evidence for interspecific competition likely by interference at the population level when comparing differences in average performance between treatments. The growth and feeding rates did not differ significantly between allopatric and sympatric Arctic charr despite lower charr densities (substitutive design) in sympatric enclosures indicating that inter‐ and intraspecific competition are of similar strength. The two species showed distinct niche segregation in sympatry, and brown trout grew faster than Arctic charr. Arctic charr did not expand their niche in allopatry, indicating that the two species compete to a limited degree for the same resources and that interference may suppress the growth of charr in sympatric enclosures. At the individual level, however, we found directional selection in sympatric enclosures against individual Arctic charr with large head and long fins and against individuals feeding on zoobenthos rather than zooplankton indicating competition for common resources (possibly exploitative) between trout and these charr individuals. In allopatric enclosures these relations were not significant. Diets were correlated to the morphology supporting selection against the benthic‐feeding type, i.e. individuals with morphology and feeding behaviour most similar to their competitor, the benthic feeding brown trout. Thus, this study lends support to the hypothesis that Arctic charr have evolved in competition with brown trout, and through ecological character displacement adapted to their present niche.  相似文献   

13.
Divergence in reproductive traits between closely related species that co‐occur contributes to speciation by reducing interspecific gene flow. In flowering plants, greater floral divergence in sympatry than allopatry may reflect reproductive character displacement (RCD) by means of divergent pollinator‐mediated selection or mating system evolution. However, environmental filtering (EF) would prevail for floral traits under stronger selection by abiotic factors than pollination, and lead to sympatric taxa being more phenotypically similar. We determine whether floral UV pigmentation and size show signatures of RCD or EF using a biogeographically informed sister taxa comparison. We determine whether 35 sister pairs in the Potentilleae tribe (Rosaceae) are allopatric or sympatric and confirm that sympatric sisters experience more similar bioclimatic conditions, an assumption of the EF hypothesis. We test whether interspecific differences are greater in allopatry or sympatry while accounting for divergence time. For UV pigmentation, sympatric sisters are more phenotypically similar than allopatric ones. For flower size, sympatric sisters show increased divergence with time since speciation but allopatric ones do not. We conclude that floral UV pigmentation shows a signature of EF, whereas flower size shows a signature of RCD. Discordant results between the traits suggest that the dominant selective agent differs between them.  相似文献   

14.
Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.  相似文献   

15.
Character displacement in Hydrobia   总被引:2,自引:0,他引:2  
A. J. Cherrill  R. James 《Oecologia》1987,71(4):618-623
Summary Fenchel's study of size variation in Hydrobiid snails in the Limfjord, Denmark, provides one of the most convincing cases of ecological character displacement available. In order to assess the generality of the phenomena within the Hydrobia genus, allopatric and sympatric Hydrobia ventrosa, H. neglecta and H. ulvae were collected from 24 coastal sites around Eastern England in July and October, 1982. Shell heights of 5,850 snails from 55 samples were recorded. These data were analysed for intraspecific allopatric-sympatric, and interspecific height differences. Such differences were not significant for H. ventrosa/H. neglecta, but the species exhibited parallel variation at sympatric sites. H. ventrosa/H. ulvae showed only significant interspecific differences, but in both allopatry and sympatry. The pattern of mean size variation for these species resembles that in the Limfjord. However the statistical analyses fail to provide support for character displacement. Differences in character states attributed to the process of character displacement may result from a number of other causes. Environmental conditions at sympatric and allopatric sites may act differentially on the heights of H. ulvae and H. ventrosa. The conditions that prevail at sympatric H. ulvae sites appear to lead to increased size in this species irrespective of the presence of H. ventrosa.  相似文献   

16.
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence.  相似文献   

17.
I quantitatively analyzed male morphology of two closely related rhinoceros beetles species (Chalcosoma caucasus F. and Chalcosoma atlas L.) in 12 allopatric and seven sympatric locations throughout Southeast Asia. The qualitative features and the magnitude of intraspecific variation of each species were unaltered between allopatric and sympatric locations. Across allopatric locations, body size, horn size, dimorphic dimension, and genitalia size nearly completely overlapped between C. caucasus and C. atlas. Yet, in all sympatric locations, the differences between the two species in these characters were highly significant. While the enlarged difference between the two species in body size in sympatry could be attributed to habitat differentiation, that in genitalia size far exceeded what was expected from the general body-size displacement. These results indicate that morphological character displacement in sympatry was most complete in sexual organs. This may account for the process of existing species conserving themselves as integrated units by avoiding interspecific competition and enhancing reproductive isolation.  相似文献   

18.
Sympatric character displacement is one possible mechanism that prevents competitive exclusion. This mechanism is thought to be behind the radiation of Darwin's finches, where character displacement is assumed to have followed secondary contact of ecologically similar species. We use a model to evaluate under which ecological and environmental conditions this mechanism is likely. Using the adaptive dynamics theory, we analyse different ecological models embedded in the secondary contact scenario. We highlight two necessary conditions for character displacement in sympatry: (i) very strong premating isolation between the two populations, and (ii) secondary contact to occur at an evolutionary branching point. Character displacement is then driven by adaptation to interspecific competition. We determine how ecological and environmental parameters influence the probability of ecological divergence. Finally, we discuss the likelihood of sympatric character displacement under disruptive selection in natural populations.  相似文献   

19.
There is little evidence from nature that divergent natural selection is crucial to speciation. However, divergent selection is implicated if traits conferring adaptation to alternative environments also form the basis of reproductive isolation. We tested the importance of body size differences to premating isolation between two sympatric sticklebacks. The species differ greatly in size, and several lines of evidence indicate that this difference is an adaptation to alternative foraging habitats. Strong assortative mating was evident in laboratory trials, but a few hybridization events occurred. Probability of interspecific mating was strongly correlated with body size: interspecific spawning occurred only between the largest individuals of the smaller species and the smallest individuals of the larger species. Probability of spawning between similar-sized individuals from different species was comparable to spawning rates within species. Disruption of mating between individuals from different species can be traced to increased levels of male aggression and decreased levels of male courtship as size differences increased between paired individuals. Interspecific mate preferences in sympatric sticklebacks appears to be dominated by body size, implicating natural selection in the origin of species.  相似文献   

20.
Resource competition is thought to play a major role in driving evolutionary diversification. For instance, in ecological character displacement, coexisting species evolve to use different resources, reducing the effects of interspecific competition. It is thought that a similar diversifying effect might occur in response to competition among members of a single species. Individuals may mitigate the effects of intraspecific competition by switching to use alternative resources not used by conspecific competitors. This diversification is the driving force in some models of sympatric speciation, but has not been demonstrated in natural populations. Here, we present experimental evidence confirming that competition drives ecological diversification within natural populations. We manipulated population density of three-spine sticklebacks (Gasterosteus aculeatus) in enclosures in a natural lake. Increased population density led to reduced prey availability, causing individuals to add alternative prey types to their diet. Since phenotypically different individuals added different alternative prey, diet variation among individuals increased relative to low-density control enclosures. Competition also increased the diet-morphology correlations, so that the frequency-dependent interactions were stronger in high competition. These results not only confirm that resource competition promotes niche variation within populations, but also show that this increased diversity can arise via behavioural plasticity alone, without the evolutionary changes commonly assumed by theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号