首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Identification of a calsequestrin-like protein from sea urchin eggs   总被引:7,自引:0,他引:7  
Following studies on calcium transport by isolated smooth endoplasmic reticulum from unfertilized sea urchin eggs (Oberdorf, J. A., Head, J. F., and Kaminer, B. (1986) J. Cell Biol. 102, 2205-2210) we have purified and partially characterized a calsequestrin-like protein from this organelle isolated from eggs from Strongylocentrotus droebachiensis and Arbacia punctulata. Muscle calsequestrin from sarcoplasmic reticulum is well characterized as a calcium storage protein. The egg protein resembles calsequestrin in its behavior in purification steps, electrophoretic mobility, blue staining with Stains-all on polyacrylamide gels, and its calcium binding and amino acid composition. Purification was attained with DEAE-cellulose and hydroxyapatite chromatography. The egg protein Mr of 58,000 in the Laemmli gel system is reduced to 54,000 under Weber-Osborn (neutral) conditions, thus showing a pH dependence in its mobility, although less than occurs with muscle calsequestrins. 25% of its amino acids are acidic and 10% basic. It binds 309 nmol of Ca2+/mg of protein, within the range reported for cardiac calsequestrin. Antigenically, the sea urchin egg protein is related to cardiac calsequestrin capable of binding anti-cardiac calsequestrin antibody.  相似文献   

2.
The distribution of calsequestrin and calreticulin in smooth muscle and non-muscle tissues was investigated. Immunoblots of endoplasmic reticulum proteins probed with anti-calreticulin and anti-calsequestrin antibodies revealed that only calreticulin is present in the rat liver endoplasmic reticulum. Membrane fractions isolated from uterine smooth muscle, which are enriched in sarcoplasmic reticulum, contain a protein band which is immunoreactive with anti-calreticulin but not with anti-calsequestrin antibodies. The presence of calreticulin in these membrane fractions was further confirmed by 45Ca2+ overlay and "Stains-All" techniques. Calreticulin was also localized to smooth muscle sarcoplasmic reticulum by the indirect immunofluorescence staining of smooth muscle cells with anti-calreticulin antibodies. Furthermore, both liver and uterine smooth muscle were found to contain high levels of mRNA encoding calreticulin, whereas no mRNA encoding calsequestrin was detected. We have employed an ammonium sulfate precipitation followed by Mono Q fast protein liquid chromatography, as a method by which calsequestrin and calreticulin can be isolated from whole tissue homogenates, and by which they can be clearly resolved from one another, even where present in the same tissue. Calreticulin was isolated from rabbit and bovine liver, rabbit brain, rabbit and porcine uterus, and bovine pancreas and was identified by its amino-terminal amino acid sequence. Calsequestrin cannot be detected in preparations from whole liver tissue, and only very small amounts of calsequestrin are detectable in ammonium sulfate extracts of uterine smooth muscle. We conclude that calreticulin, and not calsequestrin, is a major Ca2+ binding protein in liver endoplasmic reticulum and in uterine smooth muscle sarcoplasmic reticulum. Calsequestrin and calreticulin may perform parallel functions in the lumen of the sarcoplasmic and endoplasmic reticulum.  相似文献   

3.
A unique set of high molecular weight proteins was identified in junctional sarcoplasmic reticulum (SR) vesicles isolated from both cardiac muscle and skeletal muscle. These high Mr proteins were not present in free SR vesicles isolated from either tissue, nor were they observed in purified sarcolemmal fractions. The junctional SR high Mr proteins migrated as doublets in sodium dodecyl sulfate-polyacrylamide gels and exhibited apparent Mr values between 290,000 and 350,000. The high Mr proteins bound calmodulin; they were the principal proteins labeled in the cardiac and skeletal muscle SR subfractions by azido-125I-calmodulin. The high Mr proteins were also substrates for an endogenous Ca2+-calmodulin-dependent protein kinase activity, as well as exogenously added catalytic subunit of cAMP-dependent protein kinase. In addition, the junctional SR high Mr proteins were the major SR proteins degraded by a Ca2+-activated protease purified from smooth muscle. Control experiments verified the separation of junctional SR vesicles and free SR vesicles from both muscle types. Junctional SR vesicles were enriched in calsequestrin, and they exhibited Ca2+ uptake which was stimulated up to 10-fold by either ryanodine or ruthenium red. Free SR vesicles were deficient in calsequestrin and were insensitive to these two agents. Localization of the cardiac and skeletal muscle high Mr proteins to the junctional SR, coupled with demonstration of their nearly identical biochemical properties, suggests that the proteins are homologous and are likely to have similar functions in both types of striated muscle.  相似文献   

4.
It had been previously demonstrated that endoplasmic reticulum membranes from rat hepatocytes contain a major calsequestrin-like protein, on account of electrophoretic and Stains All-staining properties (Damiani et al., J. Biol. Chem. 263, 340-343). Here we show that a Ca2+-binding protein sharing characteristics in size and biochemical properties with this protein is likewise present in the isolated endoplasmic reticulum from human liver. Human calsequestrin-like protein was characterized as 62 kDa, highly acidic protein (pl 4.5), using an extraction procedure from whole tissue, followed by DEAE-Cellulose chromatography, that was originally developed for purification of skeletal muscle and cardiac calsequestrin. Liver calsequestrin-like protein bound Ca2+ at low affinity (Kd = 4 mM) and in high amounts (Bmax = 1600 nmol Ca2+/mg of protein), as determined by equilibrium dialysis, but differed strikingly from skeletal muscle calsequestrin for the lack of binding to phenyl-Sepharose resin in the absence of Ca2+, and of changes in intrinsic fluorescence upon binding of Ca2+. Thus, these results suggest that liver 62 kDa protein, in spite of its calsequestrin-like Ca2+-binding properties, does not contain a Ca2+-regulated hydrophobic site, which is a specific structural feature of the calsequestrin-class of Ca2+-binding proteins.  相似文献   

5.
In the microsome of scallop adductor striated muscle, 30K, 55K, 90K, and 360K proteins were detected as calcium binding proteins by 45Ca autoradiography on the transferred nitrocellulose membrane after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The 360K protein was directly extracted with Triton X-100 from the whole homogenate of striated portion of scallop adductor muscle and purified through DEAE cellulose and hydroxyapatite column chromatography. This purified scallop high molecular weight calcium binding protein (SHCBP) showed a faster mobility in SDS PAGE in the presence of Ca2+ than in its absence. The decrease of tryptophan fluorescence had a half maximum near pCa 7 and was slightly co-operative with Mg2+. UV absorbance was slightly increased with Ca2+. The CD spectrum also changed with Mg2+ and Ca2+. These results reflect that this SHCBP binds calcium ions under near physiological conditions. SHCBP-like high molecular weight calcium binding proteins were also detected in the smooth muscle portion of adductor muscle and branchiae of scallop by 45Ca autoradiography, but not in liver. The adductor muscle of clam had a high molecular weight calcium binding protein whose molecular weight was a little smaller than that of SHCBP. The foot of turban shell had the same molecular weight calcium binding protein as SHCBP. Stains-all, a cationic carbocyanine dye, which has been reported to stain calcium binding proteins blue, stained SHCBP blue. The spectrum of SHCBP stained with Stains-all was very similar to that of calsequestrin. Although the function of SHCBP is still unknown, it might be expected to correspond to calsequestrin of vertebrate skeletal muscle, a calcium sequestering protein, in the sarcoplasmic reticulum.  相似文献   

6.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

7.
The chronic stimulation of predominantly fast-twitch mammalian skeletal muscle causes a transformation to physiological characteristics of slow-twitch skeletal muscle. Here, we report the effects of chronic stimulation on the protein components of the sarcoplasmic reticulum and transverse tubular membranes which are directly involved in excitation-contraction coupling. Comparison of protein composition of microsomal fractions from control and chronically stimulated muscle was performed by immunoblot analysis and also by staining with Coomassie blue or the cationic carbocyanine dye Stains-all. Consistent with previous experiments, a greatly reduced density was observed for the fast-twitch isozyme of Ca(2+)-ATPase, while the expression of the slow-twitch Ca(2+)-ATPase was found to be greatly enhanced. Components of the sarcolemma (Na+/K(+)-ATPase, dystrophin-glycoprotein complex) and the free sarcoplasmic reticulum (Ca(2+)-binding protein sarcalumenin and a 53-kDa glycoprotein) were not affected by chronic stimulation. The relative abundance of calsequestrin was slightly reduced in transformed skeletal muscle. However, the expression of the ryanodine receptor/Ca(Ca2+)-release channel from junctional sarcoplasmic reticulum and the transverse tubular dihydropyridine-sensitive Ca2+ channel, as well as two junctional sarcoplasmic reticulum proteins of 90 kDa and 94 kDa, was greatly suppressed in transformed muscle. Thus, the expression of the major protein components of the triad junction involved in excitation-contraction coupling is suppressed, while the expression of other muscle membrane proteins is not affected in chronically stimulated muscle.  相似文献   

8.
Plant cells contain calsequestrin   总被引:5,自引:0,他引:5  
Calsequestrin is a high capacity low affinity Ca2+-binding protein thought to be essential for the function of the intracellular rapid releasable Ca2+ pool of a variety of animal cells. Here we show that two types of plant tissues, cultured Streptanthus tortuosus cells and spinach leaves, contain a form of calsequestrin. In subcellular fractions of S. tortuosus cells, Stains-all staining reveals a metachromatically blue-staining 56,000-Da protein enriched in the microsomal fraction. This protein shares several biochemical characteristics with animal calsequestrin: 1) it changes its apparent molecular weight with the pH; 2) it is able to bind 45Ca2+ on nitrocellulose transfers; and 3) it is recognized by antibodies against canine cardiac calsequestrin. Calsequestrin was also identified in spinach leaves using a direct extraction procedure that was developed for muscle calsequestrin. Thus, our results demonstrate that plant cells contain calsequestrin within a subcellular membrane fraction. These results also suggest that calsequestrin is an ubiquitous protein rather than being limited only to animal cells.  相似文献   

9.
The interaction of ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.  相似文献   

10.
Membrane fractions prepared from smooth muscle of the pig stomach (antral part) contain two Ca2+-dependent phosphoprotein intermediates belonging to different Ca2+-transport ATPases. These alkali-labile phosphoproteins can be separated by electrophoresis in acid medium. The 130 kDa phosphoprotein resembles a corresponding protein in the erythrocyte membrane, whereas the 100 kDa protein resembles that of the Ca2+-transport ATPase in sarcoplasmic reticulum from skeletal muscle. These resemblances are expressed in terms of Mr, reaction to La3+ and in a similar proteolytic degradation pattern. The presence of the calmodulin-stimulated ATPase in mixed membranes from smooth muscle is confirmed by its binding of calmodulin and antibodies against erythrocyte Ca2+-transport ATPase, whereas such binding does not occur with proteins present in the presumed endoplasmic reticulum from smooth muscle.  相似文献   

11.
Calsequestrin is a Ca2+-binding protein located intraluminally in the junctional sarcoplasmic reticulum (SR) of striated muscle. In this study, Ca2+ binding to cardiac calsequestrin was assessed directly by equilibrium dialysis and correlated with effects on protein conformation and calsequestrin's ability to interact with other SR proteins. Cardiac calsequestrin bound 800-900 nmol of Ca2+/mg of protein (35-40 mol of Ca2+/mol of calsequestrin). Associated with Ca2+ binding to cardiac calsequestrin was a loss in protein hydrophobicity, as revealed with use of absorbance difference spectroscopy, fluorescence emission spectroscopy, and photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125]iodophenyl)diazirine. Ca2+ binding to cardiac calsequestrin also caused a large change in its hydrodynamic character, almost doubling the sedimentation coefficient. We observed that cardiac calsequestrin was very resistant to several proteases after binding Ca2+, consistent with a global effect of Ca2+ on protein conformation. Moreover, Ca2+ binding to cardiac calsequestrin completely prevented its interaction with several calsequestrin-binding proteins, which we identified in cardiac junctional SR vesicles for the first time. The principal calsequestrin-binding protein identified in junctional SR vesicles exhibited an apparent Mr of 26,000 in sodium dodecyl sulfate-polyacrylamide gels. This 26-kDa calsequestrin-binding protein was greatly reduced in free SR vesicles and absent from sarcolemmal vesicles and was different from phospholamban, an SR regulatory protein exhibiting a similar molecular weight. Our results suggest that the specific interaction of calsequestrin with this 26-kDa protein may be regulated by Ca2+ concentration in intact cardiac muscle, when the Ca2+ concentration inside the junctional SR falls to submillimolar levels during coupling of excitation to contraction.  相似文献   

12.
In the present study we have demonstrated the presence of calreticulin, a major Ca(2+)-sequestering protein of nonmuscle cells, in a variety of cell types in tissue culture. The protein localizes to the endoplasmic reticulum in most cell types and also to the nuclear envelope or nucleoli-like structures in some cell types. Calreticulin is enriched in the rough endoplasmic reticulum, suggesting a possible involvement in protein synthesis. Calreticulin terminates with the KDEL-COOH sequence, which is likely responsible for its endoplasmic reticulum localization. Unlike some other KDEL proteins, calreticulin expression is neither heat-shock nor Ca(2+)-shock dependent. Using a variety of metabolic inhibitors, we have shown that the pool of calreticulin in L6 cells has a relatively slow turnover and a stable intracellular distribution. In proliferating muscle cells in culture (both L6 and human skeletal muscle) calreticulin is present in the endoplasmic reticulum, and additional intranuclear staining is observed. When fusion of the L6 cells is inhibited with either a high serum concentration or TGF-beta or TPA, the nucleolar staining by anticalreticulin antibodies is diminished, although the presence of calreticulin in the endoplasmic reticulum remains unchanged. In contrast, in differentiated (i.e., fused) muscle cells neither intranuclear nor intracellular staining for calreticulin is present. We conclude, therefore, that calreticulin is abundant in the endoplasmic reticulum in proliferating myoblasts, while it is present in only small amounts in sarcoplasmic reticulum membranes in terminally differentiated myotubes. We propose a model for the domain structure of calreticulin that may explain the differential subcellular distribution of this protein. Because of its widespread distribution in nonmuscle tissues, we postulate that calreticulin is a multifunctional protein that plays an important role in Ca(2+) sequestering and thus that it is the nonmuscle analog of calsequestrin.  相似文献   

13.
Junctional sarcoplasmic reticulum (SR) has been identified in microsomes from canine ventricular muscle by the presence of calsequestrin and ryanodine-sensitive Ca2+ release channels. These properties, however, are not common to cardiac cells from all species. Seiler et al (1) have recently described a high Mr polypeptide in canine junctional SR similar to the spanning protein subunits of skeletal muscle triads. We now report the existence of a polypeptide with the same mobility in SR from rabbit ventricular muscle and show that those cardiac membranes can associate with transverse (T-) tubules from rabbit skeletal muscle in K cacodylate medium. We propose that this polypeptide and the reaction with T-tubules be considered as criteria for the identification of cardiac junctional SR.  相似文献   

14.
15.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation experiments. Immunoblot experiments show that two different antibody preparations against the Ca2+-transport ATPase of cardiac-muscle sarcoplasmic reticulum also recognize the endoplasmic-reticulum/sarcoplasmic-reticulum enzyme of the smooth muscle and the slow-twitch skeletal muscle whereas they bind very weakly or not at all to the sarcoplasmic-reticulum Ca2+-transport ATPase of the fast-twitch skeletal muscle. Conversely antibodies directed against the fast-twitch skeletal-muscle isoform of the sarcoplasmic-reticulum Ca2+-transport ATPase do not bind to the cardiac-muscle, smooth-muscle or slow-twitch skeletal-muscle enzymes. The phosphorylated tryptic fragments A and A1 of the sarcoplasmic-reticulum Ca2+-transport ATPases have the same apparent Mr values in cardiac muscle, slow-twitch skeletal muscle and smooth muscle, whereas the corresponding fragments in fast-twitch skeletal muscle have lower apparent Mr values. This analytical procedure is a new and easy technique for discrimination between the isoforms of endoplasmic-reticulum/sarcoplasmic-reticulum Ca2+-transport ATPases.  相似文献   

16.
Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins   总被引:3,自引:0,他引:3  
The sarcoplasmic reticulum (SR) controls the level of intracellular Ca2+ in cardiac and skeletal muscle by storing and releasing Ca2+. A set of intralumenal SR Ca(2+)-binding proteins has been identified that may serve important roles in SR Ca2+ storage and mobilization. The most prominent of these SR proteins, calsequestrin, is discretely localized to junctional SR. Other intralumenal proteins are more widely distributed throughout the SR. All of these intralumenal SR Ca(2+)-binding proteins are acidic, stain blue with dye Stains-All, and appear to be substrates for casein kinase II. The biochemistry and cell biology of lumenal SR proteins may conform to a paradigm now emerging from the study of endoplasmic reticulum proteins.  相似文献   

17.
Calciosomes are intracellular organelles in HL-60 cells, neutrophils and various other cell types, characterized by their content of a Ca2+-binding protein that is biochemically and immunologically similar to calsequestrin (CS) from muscle cells. In subcellular fractionation studies the CS-like protein copurifies with functional markers of the inositol 1,4,5-trisphosphate (IP3) releasable Ca2+-store. These markers (ATP-dependent Ca2+-uptake and IP3-induced Ca2+-release) show a subcellular distribution which is clearly distinct from the endoplasmic reticulum and other organelles. In morphological studies, antibodies against rabbit skeletal muscle CS protein specifically stained hitherto unrecognized vesicles with a diameter between 50 and 250 nm. Thus both, biochemical and morphological studies indicate that the calsequestrin containing intracellular Ca2+-store, now referred to as the calciosome, is distinct from other known organelles such as endoplasmic reticulum. Calciosomes are likely to play an important role in intracellular Ca2+-homeostasis. They are possibly the intracellular target of inositol 1,4,5-trisphosphate and thus the source of Ca2+ that is redistributed into the cytosol following surface receptor activation in non-muscle cells.  相似文献   

18.
To explain that bronchial smooth muscle undergoes sustained agonist-induced contractions in a Ca(2+)-free medium, we hypothesized that caveolae in the plasma membrane (PM) contain protected Ca(2+). We isolated caveolae from canine tracheal smooth muscle by detergent treatment of PM-derived microsomes. Detergent-resistant membranes were enriched in caveolin-1, a specific marker for caveolae as well as for L-type Ca(2+) channels and Ca(2+) binding proteins (calsequestrin and calreticulin) as determined by Western blotting. Also, the PM Ca(2+) pump was present but not connexin 43 (a noncaveolae PM protein), the sarcoplasmic reticulum (SR) Ca(2+) pump, or the type 1 inositol 1,4, 5-trisphosphate receptor, supporting the idea that SR-derived membranes were not present. Antibodies to caveolin coimmunoprecipitated caveolin with calsequestrin or calreticulin. Thus some of the cellular calsequestrin and calreticulin associated with caveolin on the cytoplasmic face of each caveola. Immunohistochemistry of tracheal smooth muscle crysosections confirmed the localization of caveolin and the PM Ca(2+) pump to the cell periphery, whereas the SR Ca(2+) pump was located deeper in the cell. The presence of L-type Ca(2+) channels, the PM Ca(2+) pump, and the Ca(2+) bindng proteins calsequestrin and calreticulin in caveolin-enriched membranes supports caveola involvement in airway smooth muscle Ca(2+) handling.  相似文献   

19.
The 100 A filament subunit proteins of chick fibroblasts and gizzard smooth muscle were compared. These proteins are major cellular components in these cell types, constituting up to 98% of the cell's total protein. Co-electrophoresis of cytoskeletal fractions of fibroblasts and smooth muscle revealed that the subunit proteins differed in their molecular weights: 58,000 daltons in fibroblasts and 55,000 daltons in smooth muscle. Cytoskeletal fractions from other cell types were also examined: chondroblasts contained the 58,000 dalton subunit, and cytoskeletons of skeletal muscle and cardiac muscle contained both 55,000 and 58,000 dalton proteins. Chick skin and rat kangaroo Pt K2 cells had more complex subunit patterns which resemble prekeratin. The peptide patterns resulting from proteolytic digestion of the 58,000 dalton protein of fibroblasts, the 55,000 dalton proteins of smooth muscle and PT K2 cells, and chick brain tubulin differed from one another. Two-dimensional electrophoresis of reconstituted gizzard smooth muscle 100 A filaments showed the 55,000 dalton subunit to be composed of two major components, differing in their isoelectric points. Antibodies prepared against electrophoretically purified 55,000 dalton subunit protein reacted in immunodiffusion against the original smooth muscle antigen and cytoskeletal fractions from skeletal and cardiac muscle, but not from fibroblasts, brain, liver, or skin cells. A specific antigenic determinant common to subunit proteins in smooth, skeletal, and cardiac muscle, is therefore indicated. A previously described antibody against fibroblast subunit protein reacted weakly against smooth muscle filament protein in immunodiffusion revealing the presence of a common antigenic determinant between the two subunit proteins. These data demonstrate striking antigenic and primary structural differences in 100 A filament subunits from even such closely related cell types as fibroblasts on the one hand and muscle cells on the other.  相似文献   

20.
A K Grover 《Cell calcium》1985,6(3):227-236
For several years it has been debated whether the Ca-pump in smooth muscle is located in the plasma membrane or in the endoplasmic reticulum (alias sarcoplasmic reticulum). Experimental evidence using skinned smooth muscle cells and subcellular membrane fractions isolated from a number of smooth muscles is reviewed here to hopefully resolve this issue. The inescapable conclusion is that there are two modes of nonmitochondrial ATP-dependent Ca-transport. The first one, unaffected by oxalate, is localized in the plasma membranes and the second, potentiated by oxalate, is localized in the endoplasmic reticulum. Clear experiments to delineate the roles of the two pumps in the excitation-contraction cycle of the smooth muscle remain to be conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号