首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Minimal cut sets in biochemical reaction networks   总被引:3,自引:0,他引:3  
MOTIVATION: Structural studies of metabolic networks yield deeper insight into topology, functionality and capabilities of the metabolisms of different organisms. Here, we address the analysis of potential failure modes in metabolic networks whose occurrence will render the network structurally incapable of performing certain functions. Such studies will help to identify crucial parts in the network structure and to find suitable targets for repressing undesired metabolic functions. RESULTS: We introduce the concept of minimal cut sets for biochemical networks. A minimal cut set (MCS) is a minimal (irreducible) set of reactions in the network whose inactivation will definitely lead to a failure in certain network functions. We present an algorithm which enables the computation of the MCSs in a given network related to user-defined objective reactions. This algorithm operates on elementary modes. A number of potential applications are outlined, including network verifications, phenotype predictions, assessing structural robustness and fragility, metabolic flux analysis and target identification in drug discovery. Applications are illustrated by the MCSs in the central metabolism of Escherichia coli for growth on different substrates. AVAILABILITY: Computation and analysis of MCSs is an additional feature of the FluxAnalyzer (freely available for academic users upon request, special contracts for industrial companies; see web page below). Supplementary information: http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer  相似文献   

2.
The model-driven search for gene deletion strategies that increase the production performance of microorganisms is an essential part of metabolic engineering. One theoretical approach is based on Minimal Cut Sets (MCSs) which are minimal sets of knockouts disabling the operation of a specified set of target elementary modes. A limitation of the current approach is that MCSs can induce side effects disabling also desired functionalities. We, therefore, generalize MCSs to Constrained MCSs (cMCSs) allowing for the additional definition of a set of desired modes of which a minimum number must be preserved. Exemplarily for ethanol production by Escherichia coli, we demonstrate that this approach offers enormous flexibility in defining and solving knockout problems. Moreover, many existing methods can be reformulated as special cMCS problems. The cMCSs approach allows systematic enumeration of all equivalent gene deletion combinations and also helps to determine robust knockout strategies for coupled product and biomass synthesis.  相似文献   

3.
Constraint-based approaches recently brought new insight into our understanding of metabolism. By making very simple assumptions such as that the system is at steady-state and some reactions are irreversible, and without requiring kinetic parameters, general properties of the system can be derived. A central concept in this methodology is the notion of an elementary mode (EM for short) which represents a minimal functional subsystem. The computation of EMs still forms a limiting step in metabolic studies and several algorithms have been proposed to address this problem leading to increasingly faster methods. However, although a theoretical upper bound on the number of elementary modes that a network may possess has been established, surprisingly, the complexity of this problem has never been systematically studied. In this paper, we give a systematic overview of the complexity of optimisation problems related to modes. We first establish results regarding network consistency. Most consistency problems are easy, i.e., they can be solved in polynomial time. We then establish the complexity of finding and counting elementary modes. We show in particular that finding one elementary mode is easy but that this task becomes hard when a specific EM (i.e. an EM containing some specified reactions) is sought. We then show that counting the number of elementary modes is musical sharpP-complete. We emphasize that the easy problems can be solved using currently existing software packages. We then analyse the complexity of a closely related task which is the computation of so-called minimum reaction cut sets and we show that this problem is hard. We then present two positive results which both allow to avoid computing EMs as a prior to the computation of reaction cuts. The first one is a polynomial approximation algorithm for finding a minimum reaction cut set. The second one is a test for verifying whether a set of reactions constitutes a reaction cut; this test can be readily included in existing algorithms to improve their performance. Finally, we discuss the complexity of other cut-related problems.  相似文献   

4.
5.
 Elementary flux modes (direct reaction routes) are minimal sets of enzymes that can operate at steady state, with all irreversible reactions used in the appropriate direction. They can be interpreted as component pathways of a (bio)chemical reaction network. Here, two different definitions of elementary modes are given and their equivalence is proved. Several algebraic properties of elementary modes are then presented and proved. This concerns, amongst other features, the minimal number of enzymes of the network not used in an elementary mode and the situations where irreversible reactions are replaced by reversible ones. Based on these properties, a refined algorithm is presented, and it is formally proved that this algorithm will exclusively generate all the elementary flux modes of an arbitrary network containing reversible or irreversible reactions or both. The algorithm is illustrated by a biochemical example relevant in nucleotide metabolism. The computer implementation in two different programming languages is discussed. Received: 1 January 2001 / Revised version: 17 December 2001 / Published online: 17 July 2002  相似文献   

6.
The huge number of elementary flux modes in genome-scale metabolic networks makes analysis based on elementary flux modes intrinsically difficult. However, it has been shown that the elementary flux modes with optimal yield often contain highly redundant information. The set of optimal-yield elementary flux modes can be compressed using modules. Up to now, this compression was only possible by first enumerating the whole set of all optimal-yield elementary flux modes. We present a direct method for computing modules of the thermodynamically constrained optimal flux space of a metabolic network. This method can be used to decompose the set of optimal-yield elementary flux modes in a modular way and to speed up their computation. In addition, it provides a new form of coupling information that is not obtained by classical flux coupling analysis. We illustrate our approach on a set of model organisms.  相似文献   

7.
A computational procedure for identifying the minimal set of metabolic reactions capable of supporting various growth rates on different substrates is introduced and applied to a flux balance model of the Escherichia coli metabolic network. This task is posed mathematically as a generalized network optimization problem. The minimal reaction sets capable of supporting specified growth rates are determined for two different uptake conditions: (i) limiting the uptake of organic material to a single organic component (e.g., glucose or acetate) and (ii) allowing the importation of any metabolite with available cellular transport reactions. We find that minimal reaction network sets are highly dependent on the uptake environment and the growth requirements imposed on the network. Specifically, we predict that the E. coli network, as described by the flux balance model, requires 224 metabolic reactions to support growth on a glucose-only medium and 229 for an acetate-only medium, while only 122 reactions enable growth on a specially engineered growth medium.  相似文献   

8.
Elementary flux modes give a mathematical representation of metabolic pathways in metabolic networks satisfying the constraint of non-decomposability. The large cost of their computation shifts attention to computing a minimal generating set which is a conically independent subset of elementary flux modes. When a metabolic network has reversible reactions and also admits a reversible pathway, the minimal generating set is not unique. A theoretical development and computational framework is provided which outline how to compute the minimal generating set in this case. The method is based on combining existing software to compute the minimal generating set for a “pointed cone” together with standard software to compute the Reduced Row Echelon Form.  相似文献   

9.
10.
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.  相似文献   

11.
Metabolic pathway analysis is becoming increasingly important for assessing inherent network properties in (reconstructed) biochemical reaction networks. Of the two most promising concepts for pathway analysis, one relies on elementary flux modes and the other on extreme pathways. These concepts are closely related because extreme pathways are a subset of elementary modes. Here, the common features, differences and applicability of these concepts are discussed. Assessing metabolic systems by the set of extreme pathways can, in general, give misleading results owing to the exclusion of possibly important routes. However, in certain network topologies, the sets of elementary modes and extreme pathways coincide. This is quite often the case in realistic applications. In our opinion, the unification of both approaches into one common framework for metabolic pathway analysis is necessary and achievable.  相似文献   

12.
MOTIVATION: The analysis of structure, pathways and flux distributions in metabolic networks has become an important approach for understanding the functionality of metabolic systems. The need of a user-friendly platform for stoichiometric modeling of metabolic networks in silico is evident. RESULTS: The FluxAnalyzer is a package for MATLAB and facilitates integrated pathway and flux analysis for metabolic networks within a graphical user interface. Arbitrary metabolic network models can be composed by instances of four types of network elements. The abstract network model is linked with network graphics leading to interactive flux maps which allow for user input and display of calculation results within a network visualization. Therein, a large and powerful collection of tools and algorithms can be applied interactively including metabolic flux analysis, flux optimization, detection of topological features and pathway analysis by elementary flux modes or extreme pathways. The FluxAnalyzer has been applied and tested for complex networks with more than 500,000 elementary modes. Some aspects of the combinatorial complexity of pathway analysis in metabolic networks are discussed. AVAILABILITY: Upon request from the corresponding author. Free for academic users (license agreement). Special contracts are available for industrial corporations. SUPPLEMENTARY INFORMATION: http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer.  相似文献   

13.
14.
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles.  相似文献   

15.

Background  

Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates.  相似文献   

16.
17.
Rational metabolic engineering requires powerful theoretical methods such as pathway analysis, in which the topology of metabolic networks is considered. All metabolic capabilities in steady states are composed of elementary flux modes, which are minimal sets of enzymes that can each generate valid steady states. The modes of the fructose-2,6-bisphosphate cycle, the combined tricarboxylic-acid-glyoxylate-shunt system and tryptophan synthesis are used here for illustration. This approach can be used for many biotechnological applications such as increasing the yield of a product, channelling a product into desired pathways and in functional reconstruction from genomic data.  相似文献   

18.
Elementary flux mode analysis is a powerful tool for the theoretical study of metabolic networks. However, when the networks are complex, the determination of elementary flux modes leads to combinatorial explosion of their number which prevents from drawing simple conclusions from their analysis. To deal with this problem we have developed a method based on the Agglomeration of Common Motifs (ACoM) for classifying elementary flux modes. We applied this algorithm to describe the decomposition into elementary flux modes of the central carbon metabolism in Bacillus subtilis and of the yeast mitochondrial energy metabolism. ACoM helps to give biological meaning to the different elementary flux modes and to the relatedness between reactions. ACoM, which can be viewed as a bi-clustering method, can be of general use for sets of vectors with values 0, +1 or −1.  相似文献   

19.
The structural analysis of large metabolic networks exhibits a combinatorial explosion of elementary modes. A new method of classification has been developed [called aggregation around common motif (ACoM)], which groups elementary modes into classes with similar substructures. This method is applied to the tricarboxylic acid cycle and metabolite carriers. The analysis of this network evidences a great number of elementary flux modes (204) despite the low number of reactions (23). The ACoM is used to class these elementary modes in a low number of sets (8) with biological meanings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号