首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of proteins are capable of converting from their soluble forms into highly ordered fibrous cross‐β aggregates (amyloids). This conversion is associated with certain pathological conditions in mammals, such as Alzheimer disease, and provides a basis for the infectious or hereditary protein isoforms (prions), causing neurodegenerative disorders in mammals and controlling heritable phenotypes in yeast. The N‐proximal region of the yeast prion protein Sup35 (Sup35NM) is frequently used as a model system for amyloid conversion studies in vitro. Traditionally, amyloids are recognized by their ability to bind Congo Red dye specific to β‐sheet rich structures. However, methods for quantifying amyloid fibril formation thus far were based on measurements linking Congo Red absorbance to concentration of insulin fibrils and may not be directly applicable to other amyloid‐forming proteins. Here, we present a corrected formula for measuring amyloid formation of Sup35NM by Congo Red assay. By utilizing this corrected procedure, we explore the effect of different sodium salts on the lag time and maximum rate of amyloid formation by Sup35NM. We find that increased kosmotropicity promotes amyloid polymerization in accordance with the Hofmeister series. In contrast, chaotropes inhibit polymerization, with the strength of inhibition correlating with the B‐viscosity coefficient of the Jones‐Dole equation, an increasingly accepted measure for the quantification of the Hofmeister series.  相似文献   

2.
The mechanism by which proteins aggregate and form amyloid fibrils is still elusive. In order to preclude interference by cellular factors and to clarify the role of the primary sequence of Sup35p prion domain in formation of amyloid fibrils, we generated five Sup35NM variants by randomizing amino acid sequences in PrDs without altering the amino acid composition and analyzed the in vitro process of amyloid fibril formation. The results showed that each of the five Sup35NM variants polymerized into amyloid fibrils in vitro under native conditions. Furthermore, the Sup35NM variants showed differences in their aggregation time courses. These findings indicate that specific amino acid sequence features in PrD can modify the rate of conversion of Sup35p into amyloid fibrils in vitro.  相似文献   

3.
Ordered, fibrous, self-seeding aggregates of misfolded proteins known as amyloids are associated with important diseases in mammals and control phenotypic traits in fungi. A given protein may adopt multiple amyloid conformations, known as variants or strains, each of which leads to a distinct disease pattern or phenotype. Here, we study the effect of Hofmeister ions on amyloid nucleation and strain generation by the prion domain-containing fragment (Sup35NM) of a yeast protein Sup35p. Strongly hydrated anions (kosmotropes) initiate nucleation quickly and cause rapid fiber elongation, whereas poorly hydrated anions (chaotropes) delay nucleation and mildly affect the elongation rate. For the first time, we demonstrate that kosmotropes favor formation of amyloid strains that are characterized by lower thermostability and higher frangibility in vitro and stronger phenotypic and proliferation patterns effectively in vivo as compared with amyloids formed in chaotropes. These phenomena point to inherent differences in the biochemistry of Hofmeister ions. Our work shows that the ionic composition of a solution not only influences the kinetics of amyloid nucleation but also determines the amyloid strain that is preferentially formed.  相似文献   

4.
The protein Sup35 has prion properties. Its aggregation is at the origin of the [PSI(+)] trait in Saccharomyces cerevisiae. In vitro, the N-terminal domain of Sup35p alone or with the middle domain assembles into fibrils that exhibit the characteristics of amyloids. The vast majority of in vitro studies on the assembly of Sup35p have been performed using Sup35pNM, as fibrils made of Sup35pNM assembled in vitro propagate [PSI(+)] when reintroduced into yeast cells. Little is known about the assembly of full-length Sup35p and the role of the functional C-terminal domain of the protein. Here we report a systematic comparison of the biochemical and assembly properties of full-length Sup35p and Sup35pNM. We show that the native structure of the C-terminal domain is retained within the fibrils. We determined the size of Sup35p nuclei and the critical concentration for assembly that both differ from that of Sup35pNM. We demonstrate that Sup35pNM co-assembles with the full-length protein and that fibrils made of Sup35p or Sup35pNM seed the assembly of soluble Sup35pNM and Sup35p with different efficiencies. Finally, we show that fibrils made of full-length Sup35p induce with higher efficiency [PSI(+)] appearance as compared with those made of Sup35pNM. Our findings reveal differences and similarities in the assembly of Sup35p and its NM fragment and validate the use of Sup35pNM in studying some aspects of Sup35p aggregation but also underline the importance of using full-length Sup35p in studying prion propagation both in vivo and in vitro.  相似文献   

5.
The [PSI(+)] factor of Saccharomyces cerevisiae is a protein-based genetic element (prion) comprised of a heritable altered conformation of the cytosolic translation termination factor Sup35p. In vitro, the prion-determining region (NM) of Sup35p undergoes conformational conversion from a highly flexible soluble state to structured amyloid fibers, with a rate that is greatly accelerated by preformed NM fiber nuclei. Nucleated conformational conversion is the molecular basis of the genetic inheritance of [PSI(+)] and provides a new model for studying amyloidogenesis. Here we investigate the importance of structure and structural flexibility in soluble NM. Elevated temperatures, chemical chaperones and certain mutations in NM increase or change its structural content and inhibit or enhance nucleated conformational conversion. We propose that the structural flexibility of NM is particularly suited to allowing heritable protein-based changes in cellular behavior.  相似文献   

6.
Amyloidosis is a class of diseases caused by protein aggregation and deposition in various tissues and organs. In this paper, a yeast amyloid-forming protein Sup35 was used as a model for understanding amyloid fiber formation. The dynamics of amyloid formation by Sup35 were studied with scanning force microscopy. We found that: 1) the assembly of Sup35 fibers begins with individual NM peptides that aggregate to form large beads or nucleation units which, in turn, form dimers, trimers, tetramers and longer linear assemblies appearing as a string of beads; 2) the morphology of the linear assemblies differ; and 3) fiber assembly suggests an analogy to the aggregation of colloidal particles. A dipole assembly model is proposed based on this analogy that will allow further experimental testing.  相似文献   

7.
There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer’s disease, Parkinson’s disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu2+, Mn2+ and Zn2+, on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI+], specifically binds Cu2+ ions. We further characterized the affinity of NM for Cu2+, which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu2+, fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu2+ altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu2+. In contrast, Mn2+ and Zn2+ did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.  相似文献   

8.
Using the yeast prion as a model, we have developed a novel system to observe the growth of individual prion fibers directly. NM fragments, the prion-determining region of the yeast protein Sup35p, were labeled by either red or green fluorescent dyes, and the fiber growth was observed under a fluorescence microscope. When green-Sup35NM was added to the preformed fibers made of red-Sup35NM, 70-97% of green fibers grew unidirectionally, from only one end of individual red fibers, whereas the remainder grew from both ends. Similarly, the majority of red fibers grew from only one end of green fibers when the order of addition was reversed. Sonication of preformed fibers to expose fresh ends did not change the results, excluding a possibility of occasional deformation of one end as the reason of the apparent unidirectional growth. These results indicate the polarity of Sup35 prion fibers and impose constraints on the models of fiber growth.  相似文献   

9.
Factors triggering the de novo appearance of prions are still poorly understood. In yeast, the appearance of one prion, [PSI(+)], is enhanced by the presence of another prion, [PIN(+)]. The [PSI(+)] and [PIN(+)] prion-forming proteins are, respectively, the translational termination factor Sup35 and the yet poorly characterized Rnq1 protein that is rich in glutamines and asparagines. The prion domain of Rnq1 (RnqPD) polymerizes more readily in vitro than the full-length protein. As is typical for amyloidogenic proteins, the reaction begins with a lag phase, followed by exponential growth. Seeding with pre-formed aggregates significantly shortens the lag. A generic antibody against pre-amyloid oligomer inhibits the unseeded but not the self-seeded reaction. As revealed by electron microscopy, RnqPD polymerizes predominantly into spherical species that eventually agglomerate. We observed infrequent fiber-like structures in samples taken at 4 h of polymerization, but in overnight samples SDS treatment was required to reveal fibers among agglomerates. Polymerization reactions in which RnqPD and the prion domain of Sup35 (Sup35NM) cross-seed each other proceeded with a shortened lag that only depends weakly on the protein concentration. Cross-seeded Sup35NM fibers appear to sprout from globular RnqPD aggregates as seen by electron microscopy. RnqPD spherical aggregates appear to associate with and, later occlude, Sup35NM seed fibers. Our kinetic and morphological analyses suggest that, upon cross-seeding, the aggregate provides the surface on which oligomers of the heterologous protein nucleate their subsequent amyloid formation.  相似文献   

10.
《朊病毒》2013,7(2):45-47
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation, and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.  相似文献   

11.
Prion-like self-perpetuating conformational conversion of proteins is involved in both transmissible neurodegenerative diseases in mammals and non-Mendelian inheritance in yeast. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins (Hsps), including disaggregases. To provide the mechanistic underpinnings of the formation and persistence of prefibrillar amyloid seeds, we investigated the role of substoichiometric Hsp104 on the in vitro amyloid aggregation of the prion domain (NM-domain) of Saccharomyces cerevisiae Sup35. At low substoichiometric concentrations, we show Hsp104 exhibits a dual role: it considerably accelerates the formation of prefibrillar species by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into mature amyloid fibers. Additionally, Hsp104-modulated amyloid species displayed a better seeding capability compared to NM-only amyloids. Using biochemical and biophysical tools coupled with site-specific dynamic readouts, we characterized the distinct structural and dynamical signatures of these amyloids. We reveal that Hsp104-remodeled amyloidogenic species are compositionally diverse in prefibrillar aggregates and are packed in a more ordered fashion compared to NM-only amyloids. Finally, we show these Hsp104-remodeled, conformationally distinct NM aggregates display an enhanced autocatalytic self-templating ability that might be crucial for phenotypic outcomes. Taken together, our results demonstrate that substoichiometric Hsp104 promotes compositional diversity and conformational modulations during amyloid formation, yielding effective prefibrillar seeds that are capable of driving prion-like Sup35 propagation. Our findings underscore the key functional and pathological roles of substoichiometric chaperones in prion-like propagation.  相似文献   

12.
Hess S  Lindquist SL  Scheibel T 《EMBO reports》2007,8(12):1196-1201
The self-perpetuating conformational change of the translation termination factor Sup35 is associated with a prion phenomenon of Saccharomyces cerevisiae. In vitro, the prion-determining region (NM) of Sup35 assembles into amyloid-like fibres through a mechanism of nucleated conformational conversion. Here, we describe an alternative assembly pathway of NM that produces filaments that are composed of beta-strands and random coiled regions with several-fold smaller diameters than the amyloid fibres. NM filaments are not detectable with either thioflavin T or Congo Red and do not show SDS or protease resistance. As filaments do not self-convert into fibres and do not act as seed, they are not intermediates of amyloid fibre formation. Instead, they represent a stable off-pathway form. Similar to mammalian prion proteins, Sup35 contains oligopeptide repeats located in the NM region. We found that the number of repeats determines the partitioning of the protein between filaments and amyloid-like fibres. Low numbers of repeats favour the formation of the filamentous structure, whereas high numbers of repeats favour the formation of amyloid-like fibres.  相似文献   

13.
The interaction of Hsp104 with yeast prion fibers made of Sup35NM, a prion-inducing domain of Sup35, was tested. When fluorescently labeled Hsp104 was added to the preformed fibers, individual fibers were fluorescently decorated uniformly along the fiber length. However, the density of fluorescence differed from one fiber to another, indicating the presence of subspecies of Sup35NM fibers. The time course of fiber formation from monomer Sup35NM was delayed by Hsp104. Hsp104-mediated fragmentation of fibers was tested using bead-tethered fibers. In contrast with the recent report (Shorter, J., and Lindquist, S. (2004) Science 304, 1793-1797), Hsp104 alone was unable to sever the fibers. Yeast cell lysate or the Hsp104-deficient cell lysate plus Hsp104 caused ATP-dependent, guanidine hydrochloride-sensitive fragmentation of the fibers. Thus, in our experimental setup, Hsp104 plus other factor(s) in the yeast cytosol are required for severing yeast prion fiber. The reason of discrepancy from the above report is unknown but is possibly caused by different conformational subspecies of prion fibers.  相似文献   

14.
In vitro polymerization of a functional Escherichia coli amyloid protein   总被引:1,自引:0,他引:1  
Amyloid formation is characterized by the conversion of soluble proteins into biochemically and structurally distinct fibers. Although amyloid formation is traditionally associated with diseases such as Alzheimer disease, a number of biologically functional amyloids have recently been described. Curli are amyloid fibers produced by Escherichia coli that contribute to biofilm formation and other important physiological processes. We characterized the polymerization properties of the major curli subunit protein CsgA. CsgA polymerizes into an amyloid fiber in a sigmoidal kinetic fashion with a distinct lag, growth, and stationary phase. Adding sonicated preformed CsgA fibers to the polymerization reaction can significantly shorten the duration of the lag phase. We also demonstrate that the conversion of soluble CsgA into an insoluble fiber involves the transient formation of an intermediate similar to that characterized for several disease-associated amyloids. The CsgA core amyloid domain can be divided into five repeating units that share sequence and structural hallmarks. We show that peptides representing three of these repeating units are amyloidogenic in vitro. Although the defining characteristics of CsgA polymerization appear conserved with disease-associated amyloids, these proteins evolved in diverse systems and for different purposes. Therefore, amyloidogenesis appears to be an innate protein folding pathway that can be capitalized on to fulfill normal physiological tasks.  相似文献   

15.
《朊病毒》2013,7(4):400-406
Amyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yeast cells. The obtained data suggest that these aggregates and the Sup35 amyloid fibrils assembled in vitro possess common conformational epitopes recognizable by aptamers. The described DNA aptamers may be used for detection of various amyloid aggregates in yeast and, presumably, other organisms.  相似文献   

16.
Amyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yeast cells. The obtained data suggest that these aggregates and the Sup35 amyloid fibrils assembled in vitro possess common conformational epitopes recognizable by aptamers. The described DNA aptamers may be used for detection of various amyloid aggregates in yeast and, presumably, other organisms.  相似文献   

17.
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.Key Words: amyloid, prion, Rnq1, Sup35, Ure2, translation termination, yeast  相似文献   

18.
《朊病毒》2013,7(3):179-184
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.  相似文献   

19.
Saccharomyces cerevisiae prion [PSI ] is a self-propagating isoform of the eukaryotic release factor eRF3 (Sup35p). Sup35p consists of the evolutionary conserved release factor domain (Sup35C) and two evolutionary variable regions - Sup35N, which serves as a prion-forming domain in S. cerevisiae, and Sup35M. Here, we demonstrate that the prion form of Sup35p is not observed among industrial and natural strains of yeast. Moreover, the prion ([PSI + ]) state of the endogenous S. cerevisiae Sup35p cannot be transmitted to the next generations via heterologous Sup35p or Sup35NM, originating from the distantly related yeast species Pichia methanolica. This suggests the existence of a 'species barrier' in yeast prion conversion. However, the chimeric Sup35p, containing the Sup35NM region of Pichia, can be turned into a prion in S. cerevisiae by overproduction of the identical Pichia Sup35NM. Therefore, the prion-forming potential of Sup35NM is conserved in evolution. In the heterologous system, overproduction of Pichia Sup35p or Sup35NM induced formation of the prion form of S. cerevisiae Sup35p, albeit less efficiently than overproduction of the endogenous Sup35p. This implies that prion induction by protein overproduction does not require strict correspondence of the 'inducer' and 'inducee' sequences, and can overcome the 'species barrier'.  相似文献   

20.
In prion propagation, fragmentation of amyloid fibers, as well as conformational conversion of prion protein, is critical: the latter increases the net amount of abnormal prion proteins and the former multiplies number of seeds. We present here a method for in vitro measurement of fragmentation of amyloid fibers of yeast Sup35 prion protein. In this method, amyloid fibers are tethered to the surface of magnetic beads. Fragmentation of the fibers results in release of fiber fragments into the medium, which are then quantified by immunoblotting. This method is versatile for other amyloid fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号