首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Polyacetal-doxorubicin conjugates designed for pH-dependent degradation   总被引:2,自引:0,他引:2  
Terpolymerization of poly(ethylene glycol) (PEG), divinyl ethers, and serinol can be used to synthesize water soluble, hydrolytically labile, amino-pendent polyacetals (APEGs) suitable for drug conjugation. As these polyacetals display pH-dependent degradation (with faster rates of hydrolysis at acidic pH) and they are not inherently hepatotropic after intravenous (iv) injection, they have potential for development as biodegradable carriers to facilitate improved tumor targeting of anticancer agents. The aim of this study was to synthesize a polyacetal-doxorubicin (APEG-DOX) conjugate, determine its cytotoxicity in vitro and evaluate its potential for improved tumor targeting in vivo compared to an HPMA copolymer-DOX conjugate in clinical development. Amino-pendent polyacetals were prepared, and following succinoylation (APEG-succ), the polymeric intermediate conjugated to DOX via one of three methods using carbodiimide mediated coupling (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in aqueous solution was the most successful). The resultant APEG-DOX conjugates had a DOX content of 3.0-8.5 wt %, contained <1.2% free DOX (relative to total DOX content) and had a M(w) = 60000-100000 g/mol and M(w)/M(n) = 1.7-2.6. In vitro cytotoxicity studies showed APEG-DOX to be 10-fold less toxic toward B16F10 cells than free DOX (IC(50) = 6 microg/mL and 0.6 microg/mL respectively), but confirmed the serinol-succinoyl-DOX liberated during main-chain degradation to be biologically active. When administered iv to C57 black mice bearing subcutaneous (sc) B16F10 melanoma, APEG-DOX of M(w) = 86000 g/mol, and 5.0 wt % DOX content exhibited significantly (p < 0.05) prolonged blood half-life and enhanced tumor accumulation compared to an HPMA copolymer-GFLG-DOX conjugate of M(w) = 30000 g/mol and 6.2 wt % DOX content. Moreover, APEG-DOX exhibited lower uptake by liver and spleen. These observations suggest that APEG anticancer conjugates warrant further development as novel polymer therapeutics for improved tumor targeting.  相似文献   

2.
Water soluble polymer anticancer conjugates can improve the pharmacokinetics of covalently bound drugs by limiting cellular uptake to the endocytic route, thus prolonging plasma circulation time and consequently facilitating tumor targeting by the enhanced permeability and retention (EPR) effect. Many of the first generation antitumor polymer conjugates used nonbiodegradable polymeric carriers which limits the molecular weight that can be safely used to <40,000 g/mol. The aim of this ambitious study was to synthesize and evaluate a novel, prototype biodegradable polymeric system based on high molecular weight, water-soluble functionalized polyesters. The main polymeric platform was prepared from bis(4-hydroxy)butyl maleate (DBM) and poly(ethylene glycol) (PEG4000) blocks to give the polymer DBM2-PEG4000 containing biodegradable carbonate bonds and having a M(w) of 100,000-190,000 g/mol; M(n) of 37,000-53,000 g/mol, and M(w)/M(n) of 3.0-3.7. Using thioether linkages, this polymer was then grafted with HS-PEG3000-Gly-Phe-Lue-Gly doxorubicin (HS-PEG3000-GFLG-Dox) pendant side chains ( approximately 30 per DBM2-PEG chain). The final construct, DBM2-PEG4000-S-PEG3000-GFLG-Dox had a total Dox content of 3-4 wt % and a free Dox content of < or = 0.7% total Dox. During incubation with isolated lysosomal enzymes, the rate of Dox release from the polymer backbone was relatively slow (<5% release over 5 h) compared to that seen for PEG5000-GFLG-Dox alone (>20% over 5 h). The in vitro cytotoxicity was assessed using B16F10 murine melanoma (MTT assay). DBM2-PEG4000-S-PEG3000-GFLG-Dox was 10-20-fold less toxic than free Dox. In vivo antitumor activity of the DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates was assessed using a subcutaneous (s.c.) B16F10 murine melanoma model, and an intraperitoneal (i.p.) L1210 leukaemia model. The increased toxicity (attributed to poor solubility) and low antitumor activity of DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates compared to PEG5000-GFLG-Dox and HPMA copolymer-Dox conjugates was attributed to the slow rate of Dox release. The DBM2-PEG4000-S-PEG3000-GFLG-Dox conjugates were considered unfavorable as candidates for further development. However, the successful scale-up synthesis of DBM2-PEG4000-S-PEG3000 constructs suggest that they are worthy of further investigation as carriers for controlled release and targeting of less hydrophobic agents.  相似文献   

3.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

4.
Wei R  Cheng L  Zheng M  Cheng R  Meng F  Deng C  Zhong Z 《Biomacromolecules》2012,13(8):2429-2438
Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising for tumor-targeted anticancer drug delivery.  相似文献   

5.
Our past research developed two N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates that became the first synthetic polymer-anticancer conjugates to be evaluated clinically. The first, FCE28068, contained Dox bound to the polymeric carrier via a tetrapeptidic linker (glycine-phenylalanine-leucine-glycine (GFLG)) (Mw approximately 30,000 g/mol; approximately 8 wt % drug), and the second, FCE28069, contained additionally galactosamine (Gal) (Mw approximately 30,000 g/mol; approximately 7.5 wt % Dox) again bound by a GFLG linker. Galactosamine was included to promote hepatocyte/hepatoma targeting via the asialoglycoprotein receptor. Both conjugates showed antitumor activity and were clinically less toxic than free Dox (2-5 fold). However, despite their similar chemical characteristics, the conjugates displayed a significantly different maximum-tolerated dose (MTD) in patients. The aim of this study, therefore, was to use small-angle neutron scattering (SANS) to explore the solution behavior of a small library of HPMA polymer conjugates including FCE28068, FCE28069, and their pharmaceutical formulations, plus as reference compounds HPMA copolymer-GFLG conjugates containing aminopropanol (Ap) or galactosamine (Gal) alone (i.e., without Dox). The SANS data obtained showed that HPMA copolymer-GFLG-Ap conjugates (containing 5 and 10 mol % side chains) showed evidence of polymer aggregation, however, no indication of aggregation was observed for FCE28068 and FCE28069 over the concentration range studied (2.5-50 mg/mL). Clear differences in the scattering behavior for the two conjugates were observed at equivalent concentration. Data were best fitted by a model for polydisperse Gaussian coils, and the HPMA copolymer-Dox conjugate with Gal (FCE28069) exhibited a larger radius of gyration (Rg) (by approximately 2.5 nm) compared to FCE28068. In conclusion, we have shown that SANS will be a valuable tool to elucidate conformation-performance relationships for polymer-drug conjugates.  相似文献   

6.
目的:制备一种姜黄素共聚物胶束以提高姜黄素的水溶性及其抗肿瘤活性。方法:采用乳化溶剂挥发法制备了载姜黄素的共聚物胶束(Cur/PTL1胶束),对其粒径、载药量、包封率和体外药物释放行为进行了考察;并采用MTT法考察了PTL1空白胶束和Cur/PTL1胶束的体外细胞毒作用。结果:制备了粒径在40 nm左右的载姜黄素共聚物胶束,载药量为9.78±0.29%,包封率为97.24±2.68%。体外药物释放实验表明,游离姜黄素在24 h内的药物累积释放率达到90%以上,而Cur/PTL1胶束在24 h内药物累积释放率为23.8%,能够持续释放14天,14天内累积释放率为85.9%,具有一定的缓释能力。MTT实验结果表明,当PTL1空白胶束浓度达到1 mg/mL时,细胞的存活率仍在90%以上;Cur/PTL1胶束组IC50为4.73±0.23μg/mL,游离姜黄素组IC50为6.42±0.35μg/mL。结论:实验结果表明,Cur/PTL1胶束可以作为一种有前景的纳米药物输送系统。  相似文献   

7.
Conjugates of antitubercular drug Isoniazid (hydrazide of isonicotinic acid), nicotinic and alpha-picolinic acid hydrazides and glycoside steviolbioside from the plant Stevia rebaudiana as well as the product of its acid hydrolysis, diterpenoid isosteviol, were synthesized. Besides, isosteviol hydrazide and hydrazone derivatives as well as conjugates containing two isosteviol moieties connected by dihydrazide linker were also obtained. Both initial compounds and their synthetic derivatives inhibit the growth of Mycobacterium tuberculosis (H37Rv in vitro). The minimum concentration at which the growth of M. tuberculosis was inhibited by 100% (MIC) for stevioside and steviolbioside equals 7.5 and 3.8 microg/mL, respectively. MIC values for conjugates of the hydrazides of pyridine carbonic acids and steviolbioside as well as isosteviol are in the ranges 5-10 and 10-20 microg/mL, respectively. Maximum inhibitory effect against M. tuberculosis showed the conjugates of isosteviol and adipic acid dihydrazide (MIC values ranged from 1.7 to 3.1 microg/mL). Antitubercular activity of the compounds studied is higher than the activity of antitubercular drug Pyrizanamide (MIC = 12.5-20 microg/mL) but lower than the activity of antitubercular drug Isoniazid (MIC = 0.02-0.04 microg/mL).  相似文献   

8.
A series of melphalan-O-carboxymethyl chitosan (Mel-OCM-chitosan) conjugates with different spacers were prepared and structurally characterized. All conjugates showed satisfactory water-solubility (160-217 times of Mel solubility). In vitro drug release behaviors by both chemical and enzymatic hydrolysis were investigated. The prodrugs released Mel rapidly within papain and lysosomal enzymes of about 40–75%, while released only about 4–5% in buffer and plasma, which suggested that the conjugates have good plasma stability and the hydrolysis in both papain and lysosomes occurs mostly via enzymolysis. It was found that the spacers have important effect on the drug content, water solubility, drug release properties and cytotoxicity of Mel-OCM-chitosan conjugates. Cytotoxicity studies by MTT assay demonstrated that these conjugates had 52–70% of cytotoxicity against RPMI8226 cells in vitro as compared with free Mel, indicating the conjugates did not lose anti-cancer activity of Mel. Overall these studies indicated Mel-OCM-chitosan conjugates as potential prodrugs for cancer treatment.  相似文献   

9.
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.  相似文献   

10.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   

11.
Polymer-directed enzyme prodrug therapy (PDEPT) is a novel two-step antitumor approach that uses a combination of a polymeric prodrug and polymer-enzyme conjugate to generate a cytotoxic drug rapidly and selectively at the tumor site. Previously we have shown that N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound cathepsin B can release doxorubicin intratumorally from an HPMA copolymer conjugate PK1. Here we describe for the first time the synthesis and biological characterization of a PDEPT model combination that uses an HPMA-copolymer-methacryloyl-glycine-glycine-cephalosporin-doxorubicin (HPMA-co-MA-GG-C-Dox) as the macromolecular prodrug and an HPMA copolymer conjugate containing the nonmammalian enzyme beta-lactamase (HPMA-co-MA-GG-beta-L) as the activating component. HPMA-co-MA-GG-C-Dox had a molecular weight of approximately 31 600 Da and a C-Dox content of 5.85 wt %. Whereas free beta-L has a molecular weight of 45 kDa, the HPMA-co-MA-GG-beta-L conjugate had a molecular weight in the range of 75-150 kDa, and following purification no free enzyme was detectable. Against the cephalosporin C or HPMA-co-MA-GG-C-Dox substrates, the HPMA-co-MA-GG-beta-L conjugate retained 70% and 80% of its activity, respectively. In vivo (125)I-labeled HPMA-co-MA-GG-beta-L showed prolonged plasma concentration and greater tumor targeting than (125)I-labeled beta-L due to the enhanced permeability and retention (EPR) effect. Moreover, administration of HPMA-co-MA-GG-C-Dox iv to mice bearing sc B16F10 melanoma followed after 5 h by HPMA-co-MA-GG-beta-L led to release of free Dox. The PDEPT combination caused a significant decrease in tumor growth (T/C = 132%) whereas neither free Dox nor HPMA-co-MA-GG-C-Dox alone displayed activity. The PDEPT combination displayed no toxicity at the doses used, so further evaluation of this approach to establish the maximum tolerated dose (MTD) is recommended.  相似文献   

12.
6(A),6(D)-Bis-(2-amino-2-carboxylethylthio)-6(A),6(D)-dideoxy-beta-cyclodextrin 1, a diamino acid derivative of beta-cyclodextrin, is synthesized and condensed with difunctionalized PEG comonomers to give linear, high molecular weight (M(w) over 50 kDa) beta-cyclodextrin-based polymers (2-4) with pendant functionality (carboxylate). 2-4 are all highly soluble in aqueous solutions (over 200 mg/mL). 20-O-trifluoroglycinylcamptothecin, 5a, and 20-O-trifluoroglycinylglycinylglycinylcamptothecin, 5b, are synthesized and conjugated to 2 to give polymer-camptothecin (CPT) prodrugs. The solubility of CPT is increased by more than three orders of magnitude when it is conjugated to 2. The rates of CPT release from the conjugates HGGG6 (high molecular weight polymer (M(w) 97 kDa), glyglygly linker and 6 wt % CPT loading) and HG6 (high MW polymer (M(w) 97 kDa), gly linker and 6 wt % CPT loading) in either mouse or human plasma are dramatically accelerated over the rates of pure hydrolysis at pH = 7.4, indicating the presence of enzymatic cleavage as a rate-determining step at this pH in the release of the CPT. The pH of aqueous solution has a large effect on hydrolysis rate of CPT from HGGG6 and HG6; the lower the pH, the slower the rate in the range at 4.1 相似文献   

13.
Na K  Lee ES  Bae YH 《Bioconjugate chemistry》2007,18(5):1568-1574
The principal objective of this study was to fabricate doxorubicin-loaded self-organized nanogels composed of hydrophobized pullulan (PUL)-Nalpha-Boc-L-histidine (bHis) conjugates. Their responses to tumor extracellular pH (pHe) were determined, and they were also evaluated with regard to their anticancer efficacy against breast cancer cell lines (MCF-7). bHis was grafted to a PUL-deoxycholic acid (DO) conjugate (PUL-DO) via an ester linkage. PUL-DO/bHis conjugates with two different degrees of bHis substitutions (PUL-DO/bHis36 and PUL-DO/bHis78) were synthesized. PUL-DO/bHis nanogels formed via dialysis at a pH of 8.5 evidenced larger particle sizes (<140 nm) and lower critical aggregation concentrations (CACs) than did the PUL-DO nanogels (90 nm). The pH-dependent CAC of PUL-DO/bHis78 changed dramatically, from 1.2 microg/mL at pH 8.5, to 10 at 7.0, and to 660 at 6.2. A similar tendency in pH-dependent size was also noted. The ionization of the imidazole ring in bHis is principally responsible for pH dependency. The bHis moieties function as a switching tool responding to external pH. Doxorubicin (DOX)-loaded nanogels were assessed for pH-dependent releasing kinetics. The release rate of DOX from the PUL-DO/bHis78 nanogels increased significantly with reductions in pH. This resulted in increased cytotoxicity (30% cell viability at a dose of 10 microg/mL DOX equivalent) against sensitive MCF-7 cells at a pH of 6.8 and low cytotoxicity at pH 7.4 (65% cell viability at an identical dose). The results show that PUL-DO/bHis nanogels may potentially be employed as anti-tumor drug carriers.  相似文献   

14.
Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers   总被引:1,自引:0,他引:1  
CPT-11, also known as irinotecan, is a prodrug that is approved for the treatment of advanced colorectal cancer. The active metabolite of CPT-11, SN38 (7-ethyl-10-hydroxy-camptothecin), has 100- to 1000-fold more potent cytotoxic activity in tissue cell culture compared with CPT-11. However, parental administration of SN38 is not possible because of its inherently poor water solubility. It is reported here that a multiarm poly(ethylene glycol) (PEG) backbone linked to four SN38 molecules (PEG-SN38) has been successfully prepared with high drug loading and significantly improved water solubility (400- to 1000-fold increase). Three different protecting strategies have been developed in order to selectively acylate the 20-OH of SN38 to preserve its E-ring in the lactone form (the active form of SN38 with cytotoxic activities) while PEG is still attached. One chemical process has been optimized to make a large quantity of the PEG-SN38 conjugate with a high yield that can be readily adapted for scale-up production. The PEG-SN38 conjugates have shown excellent in vitro anticancer activity, with potency similar to that of native SN38, in a panel of cancer cell lines. The PEG-SN38 conjugates also have demonstrated superior anticancer activity in the MX-1 xenograft mice model compared with CPT-11. Among the four conjugates, PEG-Gly-(20)-SN38 (23) has been selected as the lead candidate for further preclinical development.  相似文献   

15.
The incorporation of anticancer prodrugs into polyacrylamide conjugates has been shown to improve tumor targeting via the so-called "enhanced permeability and retention" effect. This strategy has now been expanded to include two different classes of glutathione (GSH)-activated antitumor agents prepared by radical polymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with 2-methacryloyloxy-methyl-2-cyclohexenone (7) and/or with S-(N-4-chlorophenyl-N-hydroxycarbamoyl-thioethyl)methacrylamide (8), followed by treatment with 3-chloroperoxybenzoic acid, to give the HPMA copolymers of 7 and the 8-sulfoxide, respectively. In aqueous-buffered solution at pH 6.5, GSH reacts rapidly with poly-HPMA-8-sulfoxide (k approximately 2.3 mM(-1) min(-1)) to give S-(N-4-chlorophenyl-N-hydroxycarbamoyl)glutathione (1), a tight-binding transition state analogue inhibitor of the antitumor target enzyme glyoxalase I (K(i) = 46 nM), or with poly-HPMA-7 (k approximately 0.02 mM(-1) min(-1)) to give the electrophilic antitumor agent 3-glutathio-2-methylenecyclohexenone (4). Indeed, B16 melanotic melanoma in culture is inhibited by poly-HPMA-8-sulfoxide and by poly-HPMA-7 with IC(50) values of 168 +/- 8 and 284 +/- 5 microM, respectively. These values are significantly greater than those of the unpolymerized prodrugs suggesting that the cytotoxicity of the polymer prodrugs might be limited by slow cellular uptake via pinocytosis. This prodrug strategy should be applicable to a range of different GSH-based antitumor agents.  相似文献   

16.
On exposure to an acidic pH, linear poly(amidoamine)s (PAAs) cause membrane perturbation and consequently have potential as endosomolytic polymers for the intracellular delivery of genes and toxins. Previous studies used PAAs in the hydrochloride form only. The aim of this study was to investigate systematically the effect of the PAA counterion on pH-dependent membrane activity, general cytotoxicity, and PAA solution properties to help guide optimization of PAA structure for further development of PAA-protein conjugates. PAAs (ISA 1, 4, 22, and 23; M(w) 10000-50000 g/mol) were synthesized to provide a library of PAAs having different counterions including the acetate, citrate, hydrochloride, lactate, phosphate, and sulfate salts. pH-Dependent membrane activity was assessed using a rat red blood cell haemolysis assay (conducted at a starting pH of 7.4, 6.5, or 5.5; 1 mg/mL; 1 h), and general cytotoxicity was investigated using a murine melanoma cell line (B16F10) and a human bladder endothelial-like cell line (ECV-304). Whereas poly(ethyleneimine) was haemolytic at the starting pH of 7.4 at 1 h [ approximately 50% haemoglobin (Hb) release], none of the PAA salts were haemolytic at a starting pH of 7.4 or 6.5. Although PAA acetate, citrate, and lactate were also non-haemolytic at the starting pH of 5.5, the sulfate and hydrochloride forms caused significant haemolysis (up to 80% Hb release) and ISA 22 and 23 phosphate were also markedly haemolytic ( approximately 70% Hb release). These counterion-specific differences were also clearly visible using scanning electron microscopy, which was used to visualize the red blood cell morphology. All PAAs were relatively nontoxic (IC(50) >or= 300-5000 microg/mL) compared to poly-l-lysine (IC(50) = 2-10 microg/mL), the PAA hydrochloride salts produced the greatest cytotoxicity, and the B16F10 cells were more sensitive than the ECV-304 cells. Small-angle neutron scattering suggested that ISA 23 hydrochloride had a larger hydrodynamic radius (5.1 +/- 0.2 nm) than the citrate salt (3.1 +/- 0.2 nm). These results provide indirect evidence for the salt- and pH-dependent changes in the conformation of the polymer coil. This study clearly demonstrates the importance of optimization of the counterion form when developing endosomolytic polymers designed to mediate pH-dependent membrane permeabilization.  相似文献   

17.
The aim of this study was to compare the properties and antitumor potential of a novel type of antibody-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound doxorubicin conjugates with star structure with those of previously described classic antibody-targeted or lectin-targeted HPMA copolymer-bound doxorubicin conjugates. Classic antibody-targeted conjugates were prepared by aminolytic reaction of the multivalent HPMA copolymer containing side-chains ending in 4-nitrophenyl ester (ONp) reactive groups with primary NH(2) groups of the antibodies. The star structure of antibody-targeted conjugates was prepared using semitelechelic HPMA copolymer chains containing only one reactive N-hydroxysuccinimide group at the end of the backbone chain. In both types of conjugates, B1 monoclonal antibody (mAb) was used as a targeting moiety. B1 mAb recognizes the idiotype of surface IgM on BCL1 cells. The star structure of the targeted conjugate had a narrower molecular mass distribution than the classic structure. The peak in the star structure was around 300-350 kDa, while the classic structure conjugate had a peak around 1300 kDa. Doxorubicin was bound to the HPMA copolymer via Gly-Phe(D,L)-Leu-Gly spacer to ensure the controlled intracellular delivery. The release of doxorubicin from polymer conjugates incubated in the presence of cathepsin B was almost twice faster from the star structure of targeted conjugate than from the classic one. The star structure of the targeted conjugate showed a lower binding activity to BCL1 cells in vitro, but the cytostatic activity measured by [(3)H]thymidine incorporation was three times higher than that seen with the classic conjugate. Cytostatic activity of nontargeted and anti-Thy 1.2 mAb (irrelevant mAb) modified HPMA copolymer-bound doxorubicin was more than hundred times lower as compared to the star structure of B1 mAb targeted conjugate. In vivo, both types of conjugates targeted with B1 mAb bound to BCL1 cells in the spleen with approximately the same intensity. The classic structure of the targeted conjugate bound to BCL1 cells in the blood with a slightly higher intensity than the star structure. Both types of targeted conjugates had a much stronger antitumor effect than nontargeted HPMA copolymer-bound doxorubicin and free doxorubicin. The star structure of targeted conjugate had a remarkably higher antitumor effect than the classic structure: a single intravenous dose of 100 microg of doxorubicin given on day 11 completely cured five out of nine experimental animals whereas the classic structure of targeted conjugate given in the same schedule only prolonged the survival of experimental mice to 138% of control mice. These results show that the star structure of antibody-targeted HPMA copolymer-bound doxorubicin is a suitable conjugate for targeted drug delivery with better characterization, higher cytostatic activity in vitro, and stronger antitumor potential in vivo than classic conjugates.  相似文献   

18.
A series of trisubstituted pyrimidines were synthesized to improve aqueous solubility of our first TRPV1 clinical candidate (1; AMG 517), while maintaining potent TRPV1 inhibitory activity. Structure-activity and structure-solubility studies led to the identification of compound 26. The aqueous solubility of 26 (>or=200microg/mL, 0.01 HCl; 6.7microg/mL, phosphate buffered saline (PBS); 150microg/mL, fasted-state simulated intestinal fluid (SIF)) was significantly improved over 1. In addition, compound 26 was found to be orally bioavailable (rat F(oral)=24%) and had potent TRPV1 antagonist activity (capsaicin IC(50)=1.5nM) comparable to that of 1.  相似文献   

19.
Poly(ethylene glycol)s (PEGs) are potential drug carriers for improving the therapeutic index of anticancer agents. In this work, the anticancer drug methotrexate (MTX) was activated with N,N'-dicyclohexylcarbodiimide (DCC) and coupled to amino group bearing PEGs of MW 750, 2000, 5000, 10 000, 20,000, and 40,000. First, the activation process of MTX with DCC in the presence and absence of N-hydroxysuccinimide was analyzed through HPLC. Preincubation of methotrexate with DCC alone at 0 degrees C proved to be favorable with respect to the amount of activated species and the formation of byproducts. MTX-PEG conjugates were synthesized according to this procedure, isolated through size-exclusion chromatography, and characterized through analytical HPLC, MALDI-TOF spectrometry, and gel permeation chromatography. In a cell-free assay, all of the drug polymer conjugates inhibited the target enzyme of MTX, dihydrofolate reductase (DHFR), to a similar extent, but were not as active as free MTX. Additionally, incubation of the MTX-PEG40000 conjugate for 6 days at 37 degrees C in phosphate buffered saline (pH 7.4), in cell-conditioned medium, or in human serum revealed no significant release of methotrexate. These results, taken together, indicate that release of MTX from polymer conjugates is not necessary for an effective interaction with the active site of dihydrofolate reductase. Evaluation of the in vitro cytotoxicity of the MTX-PEG conjugates in two adherent and three suspension human tumor cell lines revealed that the IC(50) values of the tested compounds increased with the size of the drug-polymer conjugates. The most effective compound tested in these assays was the free drug MTX itself (IC(50) value ranging from approximately 0.01 to 0.05 microM), while the IC(50) values of the polymer conjugates were higher (IC(50) value for MTX-PEG750, 2000 and 5000: approximately 0.6-3 microM; for MTX-PEG10000 and 20000: approximately 2-7 microM; and for MTX-PEG40000: > 6 microM). Subsequently, MTX-PEG5000, MTX-PEG20000, and MTX-PEG40000 were evaluated in a human mesothelioma MSTO-211H xenograft model, and their antitumor effects were compared with free methotrexate and the albumin conjugate MTX-HSA, a conjugate that is currently in phase II clinical trials. In contrast to the in vitro results, the high molecular weight MTX-PEG conjugates exhibited the highest in vivo antitumor activity: At a dose of 40 and 80 mg/kg MTX-PEG5000 was less active than MTX at its optimal dose of 100 mg/kg; MTX-PEG20000 at a dose of 40 mg/kg showed antitumor efficacy comparable to MTX, but MTX-PEG40000 at a dose of 20 mg/kg was superior to MTX and demonstrated antitumor activity of the same order as MTX-HSA (20 mg/kg).  相似文献   

20.
Biodistribution, pharmacokinetics, and efficacy of prostate-cancer-targeted HPMA copolymer/DTX conjugates are evaluated in nude mice bearing prostate cancer C4-2 xenografts. PSMA-specific monoclonal antibodies 3F/11 are used as the targeting moiety. Control conjugates tumor accumulation to total background organs (heart, lung, kidney, liver, spleen and blood) accumulation increase substantially with time for the targeted conjugate, and the ratio at 48 h is 7-fold higher than that at 6 h. Preliminary evaluation of the efficacy of the conjugates in vivo show tumor growth inhibition for all HPMA copolymer/DTX conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号