首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pollen grains of Heliotropium europaeum are heterocolpate, with alternation of 3 colpori and 3 pseudocolpi. The exine is characterized by a scabrate and thick tectum, massive columellae with a granular appearance and a thick nexine. The thickening of the intine at the apertural level makes the interpretation of this zone difficult. The ontogenetic study helped to understand the ultrastructure of the exine and the apertures. The different steps are as follows. The primexine matrix is formed during the beginning of the tetrad stage; it consists of an outer thick and electron dense zone and an inner one, less dense to electrons. The tectum and the infratectum begin to form in the outer zone of the matrix, towards the middle of the tetrad stage. The infratectum consists of a network of columellae variable in thickness and oriented in different directions. The foot layer is lacking. The endexine is formed on a lamella system during the callose loss and microspore separation. The endexine becomes compact very early on its inner part. The apertures are initiated during the tetrad stage; a granulo-fibrillar oncus develops. At the free microspore stage, the oncus gets fibrillar and is bordered by endexine lamellae on its outer side and by endexine granulations on its inner one and laterally. The intine is set at the end of this stage. At the vacuolated microspore stage, the intine shows three layers: two thin, clear and homogeneous layers, one outside and the other inside, and a thick middle layer that forms the zwischenkörper, crossed by trabecula, in the apertural areas.  相似文献   

2.
Light and electron microscope observations characterized the layers that comprise Vigna vexillata L. pollen walls, and identified the timing of their development. Exine sculpturings form an unusually coarse ektexinous reticulum. The structure of the ektexine is granular; this differs from the columellate/tectate type of structure typical of most angiosperm pollen. The ektexine overlies a homogeneous-to-lamellar, electron-dense endexine, which in turn surrounds a thick, microfibrillar intine. Pollen grains are triporate and operculate, with Zwischenkörper and thickened intine underlying the apertures. The ektexine forms during the tetrad period of microspore development, the endexine and Zwischenkörper during the free microspore stage, and the intine during the bicelled (pollen) stage. Coarsely reticulate exine sculpturings and the granular structure of the patterned exine wall of the pollen grains are features that make this species suitable for detailed studies of pollen wall pattern formation.  相似文献   

3.
Upon release from the anther, pollen grains can be exposed to dry environment and dehydrate. To survive in dry conditions, the pollen wall possesses the ability to fold itself due to water loss-harmomegathic mechanism. Apertures seem to function as the primary elements of harmomegathy as they are more elastic than the remainder of the pollen wall. Contribution of other sporoderm structures, surface features, and pseudocolpi in harmomegathy are usually not considered in palynological studies. The nature of pseudocolpi has not been properly understood until now, partly because of common use of acetolysis method as a standard procedure. Different structures involved in the harmomegathy mechanism were studied in Cryptantha celosioides, Cryptantha coryi, Heliotropium europaeum, Myosotis palustris, Rindera bungei, and Rindera tetraspis. Scanning electron microscopy was used to study harmomegathy in hydrated and dehydrated pollen grains. In addition, transmission electron microscopy was used to elucidate the ultrastructural basis of pseudocolpi and other harmomegathic structures with special attention to intine structure. Our data reveal that additional flexibility of the pollen wall in Boraginaceae is provided by pseudocolpi, rugulate surface, tectate–columellate ultrastructure, and a transverse groove. Curious triangular polar poroid areas are described in M. palustris.  相似文献   

4.
Svetlana Polevova 《Grana》2013,52(5):337-349
Pollen ontogeny and sporoderm development in Aristolochia manshuriensis were studied for elaboration of the inaperturete pollen ontogeny in Aristolochia. Despite the formation of apertures in the tetrad period, the sporoderm in A. manshuriensis becomes inaperturate at the end of the free microspore period. A similar immature exine is also detected in A. macrophylla. Variants of aperture formation in the tetrad period in A. manshuriensis or formation of a polar aperture in the free microspore period in A. clematitis are associated with types of microsporogenesis. The ectexine and endexine in A. manshuriensis are formed over a longer time and reached much greater thickness than those in A. clematitis. The endexine and intine in A. manshuriensis do not reach a mature state, similar to A. clematitis. The exine of A. manshuriensis cracks, releasing a pollen tube enveloped by the intine. This fact does not hinder the functioning of the male gametophyte of A. manshuriensis.  相似文献   

5.
The tricolporate pollen grains of 38 Mediterranean and Macaronesian species ofEuphorbia L. andChamaesyce S. F. Gray have a special apertural sporoderm not found in the other taxa of theEuphorbiaceae. At the apertural margo the ectexine is thinner because of shorter columellae and the thin, fragmented or even absent foot-layer. Ectexinous granules, mixed with endexinous material, are present near the ora. The endexine is homogeneous and thickened under the colpi (at the end and at the proximity of the end of colpus). Around the ora, the endexine is granulate and lamellar with irregular cavities. The apertural intine presents a characteristic structure with thickenings running along both sides of the colpi. The arrangement and structure of these intinous thickenings depend on the distance from the ora. This special morphology of the intine is present in all taxa studied here. The genusEuphorbia is considered to be the most evolved taxon of this family. The characteristic apertural sporoderm may be an adaptative modification to different physiological conditions, so it may present an apertural mechanism which is more adapted to harmomegathic changes and thus facilitate the germination and the formation of the pollen tube.  相似文献   

6.
This study focuses on one particular layer of the pollen wall, which develops below the endexine in the free microspore stage and prior to the initiation of the intine. This membranous-granular layer (MGL) has been described by different terms in the literature and has often been interpreted either as part of the endexine, or the intine. During ontogeny, however, the granular material shows a development that is clearly distinct, both in timing and mode of formation, from the endexine as well as the intine. Its chemical composition is also characteristic; the MGL resists acetolysis. Our ontogenetic observations from four dicot and one monocot species are used to illustrate the systematically widespread occurrence of this wall layer, its ultrastructure and histochemistry, and its comparable nature throughout angiosperms.  相似文献   

7.
Michael W. Hess 《Planta》1993,189(1):139-149
The structure and development of the inner pectocellulosic pollen wall, the intine, was re-examined using high-pressure freezing with subsequent freeze substitution in Ledebouria socialis Roth, a monocotyledonous angiosperm. The bilayered intine is formed immediately after differentiation of the endexine. Similar to somatic cell walls, intine matrix substances originate from the Golgi apparatus and leave the cytoplasm via exocytosis. Exintine development starts with the apposition of intine matrix substances to the inner polysaccharide layer of the endexine (termed inner endexine), leading to irregular cell-wall ingrowths. Subsequently the inner endexine becomes intensely infiltrated with intine matrix substances; this process is interpreted as transformation of the inner endexine into intine. Along the aperture region, cell-wall matrix substances are unevenly deposited to such an extent that more or less radially oriented tubules filled with cytoplasm remain within the growing exintine. These tubules subsequently become cut off from the microspore cytoplasm by selective membrane fusions, leading to the incorporation of ground cytoplasm and ribosomes into the exintine. Exintine formation is completed prior to the first mitotic division of the pollen grain whereas the endintine is formed as a homogeneous thin layer after mitosis. Both transformation of the inner endexine by infiltration and passive incorporation of cytoplasm and ribosomes into the exintine by membrane fusions are novel features and are only observed in optimally freeze-fixed, freeze-substituted samples; general aspects of ultrastructure preservation in high-pressure-frozen, freeze-substituted plant cells are discussed as well. Modifications of the Golgi apparatus and post-Golgi-apparatus structures during pollen wall development are correlated with increasing and decreasing polysaccharide exocytosis, respectively. These evenls strictly coincide with the formation of morphologically and chemically different pollen wall layers and therefore seem to reflect the different deposition patterns of the predominant cell-wall polysaccharides.Abbreviations ER endoplasmic reticulum - FS freeze substitution - HPF high-pressure freezing - MS microspore(s) - PATAg periodic acid-thiocarbohydrazine-silver proteinate - PGS post-Golgi-apparatus structures - UA-Pb uranyl acetatelead I am grateful to Dr. Martin Müller (Institut für Zellbiologie, ETH-Zürich) for the kind permission to use the high-pressure freezer and the freeze-substitution unit at his laboratory. I wish to thank Prof. M. Hesse, Mag. M.G. Schlag (Institut für Botanik, Universität Wien) and Dr. I. Lichtscheidl (Institut für Pflanzenphysiologie, Universität Wien) for helpfull discussions. Thanks are also due to A. Glaser and W. Urbancik for excellent technical assistence and to the Stadtgärtnerei Zürich for providing the plant material. This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

8.
This study aimed to elucidate the anther wall development, pollen wall development, and exine structure of Trochodendron aralioides Siebold and Zuccarini, a tree with primitive vessels but long considered to lack vessel elements in its wood. The anther wall is the basic type: epidermis, endothecium layer, three middle layers, and tapetum. The anther tapetum is glandular and cells are uniseriate. Microspore mother cells undergo meiosis with simultaneous cytokinesis to produce tetrahedral tetrads enclosed within a callose wall. Before development of the protectum, primexine is inserted against the callose, and the plasma membrane is invaginated. Then, the probacula are elongated under the protectum and arise basally from the plasma membrane. The foot layer formation is concomitant with callose wall dissolution. The foot layer is thick, and the endexine is thin. The foot layer and the endexine are both continuous. The intine is initially formed in the vacuolated microspore stage. Hollow Ubisch bodies are observed on the inner surface of the tapetum in free microspore stage. Pollen grains are tricolporate and 2-celled at the time of shedding. The numerous anthers of a single flower are at different development stages in both protandrous and protogynous individuals.  相似文献   

9.
Koichi Uehara  Norio Sahashi 《Grana》2013,52(6):267-274
Pollen wall development in Cryptomeria japonica was observed by scanning and transmission electron microscopy. The pollen of C. japonica is characterized by a non-saccate, projecting papilla. The exine of C. japonica consists of the outer granular ectexine and the inner lamellated endexine. At the tetrad stage, the initial granular layer of the pro-ectexine first forms on the microspore plasma membrane. The tripartite lamellae of the pro-endexine form under the pro-ectexine. The prosporopollenin material is deposited on the pro-ectexine and pro-endexine at the free spore stage. The ectexine granule increases its volume and the endexine lamellae thicken. The papilla protrudes during the tetrad stage. The tip of the papilla bends laterally where the exine is thinner. Exine construction in C. japonica is similar to that of Cunninghamia; however, the amount and size of the granular ectexine and lamellated endexine differ. The conspicuous papilla protrudes and bends during the tetrad period.  相似文献   

10.
Summary The ultrastructural changes of the pollen wall of three types of fertile and one of sterileVicia pollen were related to the autofluorescence of the pollen wall, measured by a microspectroscopic method. Till the liberation of the microspores from the tetrad, the spectrum of the ectexine shows sometimes two maxima and has a very low intensity. After this period the endexine is formed and its spectrum has one maximum with a high intensity. The differences of the pollen wall between the sterile and fertile pollen exist of the presence of one spectral maximum during the tetrad stage, a thick endexine and the absence of the intine in the sterile pollen. The different types show much differences during the tetrad stage in the callose wall as well as the ectexine. The autofluorescence illustrates the complexity and specificity of the pollen wall development.  相似文献   

11.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

12.
John R. Rowley  Gunnar Erdtman 《Grana》2013,52(2-3):517-567
Four phenomena were observed in a study of Populus tremula and P. tremula f. gigas microspores from before microspore mitosis through mature pollen which may have general significance in the ontogeny of pollen grains: 1) The exine and orbicules (Ubisch bodies) were covered by membranes. 2) The exine and the tapetal surfaces where orbicules form were covered by a polysaccharide (PAS positive) coat until after microspore mitosis; subsequently the tapetum became plasmodial. 3) Material having the staining characteristics of the nexine 2 (endexine in the sense of Fægri) accumulated on membranes in microspores in the space between the exine and the plasma membrane. That material was almost completely gone from the wall in mature pollen. The membranes on which material had accumulated migrated through the exine. Following passage through the exine these membranes were seen as empty fusiform vesicles in micrographs of anthers prepared by commonly used methods. 4) At about microspore mitosis when the cellulosic intine begins to form, microtubules about 240 A in diameter occurred near the plasma membrane and generally parallel with it. Positive acid phosphatase reactions in tapetal cells together with the morphology of orbicules and other tapetal organelles suggest that the wall of orbicules, which is like the pollen exine, may form as a residual product of a lysosome system.

Sections of mature Salix humilis pollen were compared with Populus.  相似文献   

13.
The Nelumbonaceae are a small family of aquatic angiosperms comprising Nelumbo nucifera and Nelumbo lutea. Historically, the genus has been considered to be closely related to Nymphaeales, however new systematic work has allied Nelumbo with lower eudicots, particularly Platanus. In recent years, studies of pollen development have contributed greatly to the understanding of phylogenetic relationships, but little has been known about these events in Nelumbo. In this paper, pollen and anther development are morphologically described for the first time in N. lutea. A comprehensive ontogenetic sequence is documented, including the sporogenous tissue, microspore mother cell, tetrad, free spore, and mature pollen grain stages. The deposition of a microspore mother cell coat and callose wall, the co-occurrence of both tetrahedral and tetragonal tetrads, the formation of a primexine in tetrads, and primexine persistence into the late free spore stage are shown. The majority of exine development occurs during the free spore stage with the deposition of a tectate-columellate ectexine, a lamellate endexine, and an unusual granular layer below and intermixed with the endexine lamellae. A two-layered intine forms rapidly during the earliest mature pollen stage. Major events of anther development documented include the degradation of a secretory-type tapetum during the free spore stage and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The majority of mature pollen grains are tricolpate, however less common monosulcate and diaperturate grains also develop. Co-occurring aperture types in Nelumbo have been suggested to be an important transition in angiosperm aperture number. However, aperture variability in Nelumbo may be correlated with the lateness of aperture ontogeny in the genus, which occurs in the early free spore stage. This character, as well as other details of pollen and anther ontogeny in Nelumbo, are compared to those of Nymphaeales and Platanus in an effort to provide additional insight into systematic and phylogenetic relationships. Although Nelumbo is similar to both groups in several characters, the ontogenetic sequence of the genus is different in many ways.  相似文献   

14.
Pollen grains of 16 species of Microula Benth. and six species of three related genera were examined under LM and SEM, and four of them also under TEM. Pollen grains of Microula and three related genera are dumb-bell-shaped, 3-colporate apertures alternate with three pseudocolpi. Pollen grains are very small,ranging from 12.18 x 7.13 μm to 6.36 x 3.66μm. In general, colpi with os are wider and shorter, rhomboid, but sometimes they are equal to pseudocolpi in length. Colpus margins are regularly or irregularly tooth-like. The surface of colpi is psilate or processed. Ora are circular or lalongated in outline, protruded or not; surface of os membrane is smooth or scabrid. The exine is usually indistinctly layered under LM. The exine surface is psilate, and more or less perforate. TEM examination shows that the pollen wall is differentiated into exine and intine: the exine includes ectexine and endexine, while the ectexine consists of tectum, columellae and foot-layer. However, there are differences in constriction of equatorial area, apertural characters, ornamentation and exinous ultrastructure between these genera. Pollen morphology indicates that the genus Microula Benth. is primitive, directly related to the genus Actinocarya Benth .; the genus Asperugo L. Is more advanced. The genus Eritrichium Schrad. which has two ora or one os and is anisopolar, represents the most advanced group among them. Noteworthily, the diorate phenomenon is found for the first time not onlyin the genus but in the family Boraginaceae.  相似文献   

15.
Aouali N  Laporte P  Clément C 《Planta》2001,213(1):71-79
Using the monoclonal antibodies JIM 5 and 7, pectin was immunolocalized and quantitatively assayed in three anther compartments of Lilium hybrida during pollen development. Pectin levels in both the anther wall and the loculus increased following meiosis, were maximal during the early microspore stages and declined during the remainder of pollen ontogenesis. In the microspores/pollen grains, pectin was detectable at low levels during the microspore stages but accumulated significantly during pollen maturation. During early microspore vacuolation, esterified pectin epitopes were detected both in the tapetum cytoplasm and vacuoles. In the anther loculus, the same epitopes were located simultaneously in undulations of the plasma membrane and in the locular fluid. At the end of microspore vacuolation, esterified pectin epitopes were present within the lipids of the pollenkitt, and released in the loculus at pollen mitosis. Unesterified pectin epitopes were hardly detectable in the cytoplasm of the young microspore but were as abundant in the primexine matrix as in the loculus. During pollen maturation, both unesterified and esterified pectin labelling accumulated in the cytoplasm of the vegetative cell, concurrently with starch degradation. In the mature pollen grain, unesterified pectin epitopes were located in the proximal intine whereas esterified pectin epitopes were deposited in the distal intine. These data suggest that during early microspore development, the tapetum secretes pectin, which is transferred to the primexine matrix via the locular fluid. Further, pectin is demonstrated to constitute a significant component of the pollen carbohydrate reserves in the mature grain of Lilium. Received: 3 July 2000 / Accepted: 19 October 2000  相似文献   

16.
This last portion of our developmental study ofPinus sylvestris L. pollen grains extends from just prior to the first microspore mitosis to the microsporangial dehiscence preparatory to pollen shedding. In nine years of collecting each day the duration of the above period was 7 to 11 days. Tapetal cells extended into the loculus and embraced microspores during the initial part of the above period. Thereafter tapetal cells receded, became parallel to parietal cells and so imbricated that there appeared to be two or three layers of tapetal cells. Tapetal cells were present up to the day before pollen shedding, but only rER and some mitochondria appeared to be in good condition at that time. A callosic layer (outer intine) was initiated under the endexine before microspore mitosis. After the first mitosis the first prothallial cell migrated to the proximal wall and was covered on the side next to the pollen cytoplasm by a thin wall joining the thick outer intine. There are plasmodesmata between pollen cytoplasm and the prothallial cell. After the second mitosis the second prothallial cell became enveloped by the outer intine. The inner intine appears after formation of the two prothallial cells but before the third mitosis. During this two-prothallial cell period before the third mitosis, plastids had large and complex fibrillar assemblies shown to be modified starch grains. After the third mitosis plastids of the pollen cytoplasm contained starch and the generative cell (antheridial initial), the product of that mitosis, is enveloped by the inner intine. On the day of pollen shedding cells are removed from the microsporangial wall by what appears to be focal autolysis. The tapetal and endothecial cells for 10–15 µm on each side of the dehiscence slit are completely removed. One or more epidermal cells are lysed, but both a thin cuticle and the very thin sporopollenin-containing peritapetal membrane remain attached to the undamaged epidermal cells bordering the dehiscence slit. Our study terminates on the day of pollen shedding with mature pollen still within the open microsporangium. At that time there is no longer a clear morphological distinction between the outer and inner intine but, judging by stain reactions, there is a chemical difference. The exine of shed pollen grains was found to be covered by small spinules on the inner surface of alveoli. These had the same spacing as the Sporopollenin Acceptor Particles (SAPs) associated with exine initiation and growth.  相似文献   

17.
Nexine and intine development in Silene alba (Caryophyllaceae) was investigated by electron microscopy and enzyme cytochemistry. Nexine-2 forms by deposition of sporopollenin along unit membrane lamellae closely associated with the microspore plasma membrane in the late tetrad stage. After the callose wall dissolves, electron density increases along the tangentially oriented fibers of the proximal primexine, forming nexine-1. When the exine is essentially complete, the intine begins to develop. In the nearly mature microspore, acid phosphatase activity appears in the peripheral cytoplasm just prior to its extrusion into the intine of the mature pollen grain.  相似文献   

18.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

19.
The pollen morphology and ultrastructure of 20 species, representing eight genera of the Magnoliaceae are described based on observations with light, scanning and transmission electron microscopy. The family represents a homogeneous group from a pollen morphological point of view. The pollen grains are boat-shaped with a single elongate aperture on the distal face. The tectum is usually microperforate, rarely slightly or coarsely rugulose. Columellae are often irregular, but well-developed columellae do occur in some taxa. The endexine is distinct in 14 species, but difficult to discern in the genera Parakmeria, Kmeria and Tsoongiodendron. Within the aperture zone the exine elements are reduced to a thin foot layer. The intine has three layers with many vesicular-fibrillar components and tubular extensions in intine 1. The symmetry of the pollen grains, shape, type of aperture and ultrastructure of the intine show a remarkable uniformity in the family. Nevertheless there is variety in pollen size, ornamentation and the ultrastructure of the exine. The pollen of Magnoliaceae is an example of an early trend of specialization, and supports the view that Magnoliaceae are not one of the earliest lines in the phylogeny of flowering plants.  相似文献   

20.
Ren Hua Zheng  Shun De Su  Hui Xiao 《Grana》2013,52(5):363-370
Microsporongium development in Chinese fir (Cunninghamia lanceolata) was investigated using cytochemical methods with a special attention to the fluctuations (in amount and distribution) of polysaccharide and lipid reserves along the development of the microsporangium. Semi-thin sections of microsporangia at different developmental stages were stained with periodic acid–Schiff (PAS) reagent and Sudan Black B to detect insoluble polysaccharides and neutral lipids, respectively. In young microsporangia, microspore mother cells began to accumulate starch grains and lipids, which disappeared during microspore development. Following microspore division, the starch grains present in bicellular pollen disappeared and abundant lipid deposits were accumulated. In mature pollen, only abundant lipids accumulated as storage material. The pollen wall of C. lanceolata is predominantly composed of polysaccharidic intine, and the sporopollenin-containing exine is weakly developed and only forms a thin layer covering the intine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号