首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The RNA recognition motif (RRM) is a prevalent class of RNA binding domains. Although a number of RRM/RNA structures have been determined, thermodynamic analyses are relatively uncommon. Here, we use isothermal titration calorimetry to characterize single-stranded (ss)RNA binding by four representative RRM-containing proteins: (i) U2AF(65), (ii) SXL, (iii) TIA-1, and (iv) PAB. In all cases, ssRNA binding is accompanied by remarkably large favorable enthalpy changes (-30 to -60 kcal mol(-1)) and unfavorable entropy changes. Alterations of key RRM residues and binding sites indicate that under the nearly physiological conditions of these studies, large thermodynamic changes represent a signature of specific ssRNA recognition by RRMs.  相似文献   

2.
RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.  相似文献   

3.
An RNA recognition motif in the bicoid protein   总被引:4,自引:0,他引:4  
M Rebagliati 《Cell》1989,58(2):231-232
  相似文献   

4.
The kink-turn: a new RNA secondary structure motif   总被引:29,自引:0,他引:29  
Analysis of the Haloarcula marismortui large ribosomal subunit has revealed a common RNA structure that we call the kink-turn, or K-turn. The six K-turns in H.marismortui 23S rRNA superimpose with an r.m.s.d. of 1.7 A. There are two K-turns in the structure of Thermus thermophilus 16S rRNA, and the structures of U4 snRNA and L30e mRNA fragments form K-turns. The structure has a kink in the phosphodiester backbone that causes a sharp turn in the RNA helix. Its asymmetric internal loop is flanked by C-G base pairs on one side and sheared G-A base pairs on the other, with an A-minor interaction between these two helical stems. A derived consensus secondary structure for the K-turn includes 10 consensus nucleotides out of 15, and predicts its presence in the 5'-UTR of L10 mRNA, helix 78 in Escherichia coli 23S rRNA and human RNase MRP. Five K-turns in 23S rRNA interact with nine proteins. While the observed K-turns interact with proteins of unrelated structures in different ways, they interact with L7Ae and two homologous proteins in the same way.  相似文献   

5.
6.
Analysis of the available crystal structures of the ribosome and of its subunits has revealed a new RNA motif that we call G-ribo. The motif consists of two double helices positioned side-by-side and connected by an unpaired region. The juxtaposition of the two helices is kept by a complex system of tertiary interactions spread over several layers of stacked nucleotides. In the center of this arrangement, the ribose of a nucleotide from one helix is specifically packed with the ribose and the minor-groove edge of a guanosine from the other helix. In total, we found eight G-ribo motifs in both ribosomal subunits. The location of these motifs suggests that at least some of them play an important role in the formation of the ribosome structure and/or in its function.  相似文献   

7.
RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B″ proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the β-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B″ proteins. However, unlike U1A and U2B″, some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an α-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.  相似文献   

8.
The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.  相似文献   

9.
10.
Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins.  相似文献   

11.
The lonepair triloop (LPTL) is an RNA structural motif that contains a single ("lone") base-pair capped by a hairpin loop containing three nucleotides. The two nucleotides immediately outside of this motif (5' and 3' to the lonepair) are not base-paired to one another, restricting the length of this helix to a single base-pair. Four examples of this motif, along with three tentative examples, were initially identified in the 16S and 23S rRNAs with covariation analysis. An evaluation of the recently determined crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits revealed the authenticity for all of these proposed interactions and identified 16 more LPTLs in the 5S, 16S and 23S rRNAs. This motif is found in the T loop in the tRNA crystal structures. The lonepairs are positioned, in nearly all examples, immediately 3' to a regular secondary structure helix and are stabilized by coaxial stacking onto this flanking helix. In all but two cases, the nucleotides in the triloop are involved in a tertiary interaction with another section of the rRNA, establishing an overall three-dimensional function for this motif. Of these 24 examples, 14 occur in multi-stem loops, seven in hairpin loops and three in internal loops. While the most common lonepair, U:A, occurs in ten of the 24 LPTLs, the remaining 14 LPTLs contain seven different base-pair types. Only a few of these lonepairs adopt the standard Watson-Crick base-pair conformations, while the majority of the base-pairs have non-standard conformations. While the general three-dimensional conformation is similar for all examples of this motif, characteristic differences lead to several subtypes present in different structural environments. At least one triloop nucleotide in 22 of the 24 LPTLs in the rRNAs and tRNAs forms a tertiary interaction with another part of the RNA. When a LPTL containing the GNR or UYR triloop sequence forms a tertiary interaction with the first (and second) triloop nucleotide, it recruits a fourth nucleotide to mediate stacking and mimic the tetraloop conformation. Approximately half of the LPTL motifs are in close association with proteins. The majority of these LPTLs are positioned at sites in rRNAs that are conserved in the three phylogenetic domains; a few of these occur in regions of the rRNA associated with ribosomal function, including the presumed site of peptidyl transferase activity in the 23S rRNA.  相似文献   

12.
In the last few years a novel RNA folding principle called pseudoknotting has emerged. Originally discovered in noncoding regions of plant viral RNAs, pseudoknots now appear to be a widespread structural motif in a number of functionally different RNAs. These structural elements are part of tRNA-like structures and are involved in folding catalytic sites of ribozymes. They increase the efficiency of ribosomal frameshifting or can serve as specific binding sites for regulatory proteins.  相似文献   

13.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

14.
15.
16.
17.
18.
The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM-RNA or RRM-protein), we reviewed the structure-function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM-nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM beta-sheet, the two external beta-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein-RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.  相似文献   

19.
The human La autoantigen (hLa) protein is a predominantly nuclear phosphoprotein that contains three potential RNA binding domains referred to as the La motif and the RNA recognition motifs RRMs 1 and 2. With this report, we differentiated the contribution of its three RNA binding domains to RNA binding by combining in vitro and in vivo assays. Also, surface plasmon resonance technology was used to generate a model for the sequential contribution of the RNA binding domains to RNA binding. The results indicated that the La motif may contribute to specificity rather than affinity, whereas RRM1 is indispensable for association with pre-tRNA and hY1 RNA. Furthermore, RRM2 was not crucial for the interaction with various RNAs in vivo, although needed for full-affinity binding in vitro. Moreover, earlier studies suggest that RNA binding by hLa may direct its subcellular localization. As shown previously for RRM1, deletion of RNP2 sequence in RRM1 alters nucleolar distribution of hLa, not observed after deletion of the La motif. Here we discuss a model for precursor RNA binding based on a sequential association process mediated by RRM1 and the La motif.  相似文献   

20.
We report the evolution of an RNA aptamer to change its binding specificity. RNA aptamers that bind the free amino acid tyrosine were in vitro selected from a degenerate pool derived from a previously selected dopamine aptamer. Three independent sequences bind tyrosine in solution, the winner of the selection binding with a dissociation constant of 35 microM. Competitive affinity chromatography with tyrosine-related ligands indicated that the selected aptamers are highly L-stereo selective and also recognize L-tryptophan and L-dopa with similar affinity. The binding site was localized by sequence comparison, analysis of minimal boundaries, and structural probing upon ligand binding. Tyrosine-binding sites are characterized by the presence of both tyrosine (UAU and UAC) and termination (UAG and UAA) triplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号