首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Nitric oxide (NO) produced by NO synthases causes nitration and nitrosylation of cellular factors. We have shown previously that endogenously produced or exogenously added NO induces expression of BNIP3 (Bcl-2/adenovirus E1B 19 kDa-interacting protein 3), leading to death of macrophages (Yook, Y.-H., Kang, K.-H., Maeng, O., Kim, T.-R., Lee, J.-O., Kang, K.-i., Kim, Y.-S., Paik, S.-G., and Lee, H. (2004) Biochem. Biophys. Res. Commun. 321, 298-305). We now provide evidence that Ras mediates NO-induced BNIP3 expression via the MEK/ERK/hypoxia-inducible factor (HIF)-1 pathway. (a) ras-Q61L, a constitutively active form of Ras, up-regulated BNIP3 protein expression by enhancing Bnip3 promoter activity, and ras-S17N, a dominant-negative form, and ras-C118S, an S-nitrosylation mutant, blocked NO-induced BNIP3 expression, suggesting that Ras acts downstream of NO and that NO activates Ras by nitrosylation. (b) U0126, a specific MEK inhibitor, completely abolished BNIP3 expression and the stimulation of promoter activity by NO and Ras, whereas 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, SB203580, and wortmannin, specific inhibitors of soluble guanylyl cyclase, p38 MAPK, and phosphatidylinositol 3-kinase, respectively, had no effect. Ras, MEK1/2, and ERK1/2 were sequentially activated by NO treatment of macrophages. (c) Mutation of the HIF-1-binding site (hypoxia-response element) in the Bnip3 promoter abolished BNIP3 induction, and HIF-1alpha was strongly induced by NO. (d) Transient expression of activated Ras promoted macrophage death, as did NO, and this Ras-mediated cell death was inhibited by silencing BNIP3 expression. These results suggest that NO-induced death of macrophages is mediated, at least in part, by BNIP3 induction.  相似文献   

2.
3.
4.
5.
Apoptosis, also known as programmed cell death, plays an essential role in eliminating excessive, damaged or harmful cells. Previous work has demonstrated that anticancer drugs induce cell apoptosis by inducing cytotoxicity. In recent years, several reports demonstrated modulated expression of DNA methyltransferases 1 (DNMT1) and acetylcholinesterase (AChE) in a variety of tumors. In this study, we showed that the expression of DNMT1 was decreased and the methylation of CpGs in the promoter of AChE was reduced in anticancer drugs-induced apoptotic hepatocellular carcinoma cells. Silencing of DNMT1 expression by AZA or RNA interference (RNAi) restored AChE production and inhibition of AChE expression by RNAi protected HCC cells from anticancer drugs-induced apoptosis. Furthermore, we demonstrated that the regulation of AChE by DNMT1 was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis. In addition, immunohistochemical staining showed that P-p38, DNMT1 and AChE were aberrantly expressed in a subset of HCC tumors. Taken together, we demonstrated the regulation of AChE by DNMT1 and further, we found that this regulation was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis.  相似文献   

6.
7.
8.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

9.
Reduced fetal growth associates with endothelial dysfunction and cardiovascular risk in both young and adult offspring and the nitric oxide (NO) system has been implicated in these effects. Epigenetic processes are likely to underlie such effects, but there is to date no evidence that endothelial dysfunction in early life results from epigenetic processes on key genes in the NO system, such as NOS3 (eNOS) and ARG2 (arginase-2). We determined basal DNA methylation status in NOS3 and ARG2 promoters, and DNA methyltransferase 1 (DNMT1) effect on eNOS and arginase-2 expression using human endothelial cells isolated from umbilical arteries (HUAEC) and veins (HUVEC) from control and intrauterine growth restricted (IUGR) fetuses. Compared with cells from control pregnancies, eNOS protein and mRNA levels were increased in HUAEC, but decreased in HUVEC, from IUGR, while arginase-2 levels were increased in IUGR-HUVEC. The NOS3 promoter showed a decrease in DNA methylation at CpG -352 in IUGR-HUAEC, and an increase in IUGR-HUVEC, when compared with control cells. Methylation in the hypoxia response element of the NOS3 promoter was increased in IUGR-HUAEC and decreased in HUVEC. Methylation in the AGR2 promoter in IUGR-HUVEC was decreased in a putative HRE, and without changes in IUGR-HUAEC. Silencing of DNMT1 expression normalized eNOS expression in IUGR endothelial cells, and restored the normal response to hypoxia in HUVEC, without effects on arginase-2. This data suggest that eNOS expression in IUGR-derived endothelial cells is programmed by altered DNA methylation, and can be reversed by transient silencing of the DNA methylation machinery.  相似文献   

10.
11.
Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes. Since macrophages are major players in inflammation and defense against infection we determined the differences in methylation of autophagy genes in macrophages derived from young and aged mice. We found that promoter regions of Atg5 and LC3B are hypermethylated in macrophages from aged mice and this is accompanied by low gene expression. Treatment of aged mice and their derived macrophages with methyltransferase inhibitor (2)-epigallocatechin-3-gallate (EGCG) or specific DNA methyltransferase 2 (DNMT2) siRNA restored the expression of Atg5 and LC3 in vivo and in vitro. Our study builds a foundation for the development of novel therapeutics aimed to improve autophagy in the elderly population and suggests a role for DNMT2 in DNA methylation activities.  相似文献   

12.
So AY  Jung JW  Lee S  Kim HS  Kang KS 《PloS one》2011,6(5):e19503
Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs) with 5-azacytidine (5-AzaC) or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) and increased p16(INK4A) and p21(CIP1/WAF1) expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A) and p21(CIP1/WAF1) promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A) and p21(CIP1/WAF1) promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG) proteins and increased expression of microRNAs (miRNAs), which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A) and p21(CIP1/WAF1) promoter regions.  相似文献   

13.
Epithelial‐mesenchymal transition (EMT) was reported to be involved in the activation of hepatic stellate cells (HSCs), contributing to the development of liver fibrosis. Epithelial‐mesenchymal transition can be promoted by the Hedgehog (Hh) pathway. Patched1 (PTCH1), a negative regulatory factor of the Hh signalling pathway, was down‐regulated during liver fibrosis and associated with its hypermethylation status. MicroRNAs (miRNAs) are reported to play a critical role in the control of various HSCs functions. However, miRNA‐mediated epigenetic regulations in EMT during liver fibrosis are seldom studied. In this study, Salvianolic acid B (Sal B) suppressed the activation of HSCs in CCl4‐treated mice and mouse primary HSCs, leading to inhibition of cell proliferation, type I collagen and alpha‐smooth muscle actin. We demonstrated that the antifibrotic effects caused by Sal B were, at least in part, via inhibition of EMT and the Hh pathway. In particular, up‐regulation of PTCH1 was associated with decreased DNA methylation level after Sal B treatment. Accordingly, DNA methyltransferase 1 (DNMT1) was attenuated by Sal B in vivo and in vitro. The knockdown of DNMT1 in Sal B‐treated HSCs enhanced PTCH1 expression and its demethylation level. Interestingly, increased miR‐152 in Sal B‐treated cells was responsible for the hypomethylation of PTCH1 by Sal B. As confirmed by the luciferase activity assay, DNMT1 was a direct target of miR‐152. Further studies showed that the miR‐152 inhibitor reversed Sal B‐mediated PTCH1 up‐regulation and DNMT1 down‐regulation. Collectively, miR‐152 induced by Sal B, contributed to DNMT1 down‐regulation and epigenetically regulated PTCH1, resulting in the inhibition of EMT in liver fibrosis.  相似文献   

14.
Sun L  Zhao H  Xu Z  Liu Q  Liang Y  Wang L  Cai X  Zhang L  Hu L  Wang G  Zha X 《Cellular signalling》2007,19(11):2255-2263
DNA methylation, which affects gene expression and chromatin stability, is catalyzed by DNA methyltransferases (DNMTs) of which DNMT1 possesses most abundant activity. PI3K/PKB pathway is an important pathway involved in cell proliferation, viability, and metabolism and often disrupted in cancer. Here we investigated the impact of PKB on DNMT1 and DNA methylation. Positive correlation between PKB-Ser473-phosphorylation and DNMT1 protein level in 17 human cell lines (p<0.01) and in 27 human bladder cancer tissues (p<0.05) was found. With activator, inhibitor, siRNA and constitutively active or dominant-negative plasmids of PKB, we found that PKB increased the protein level of DNMT1 without coordinate mRNA change, which was specific rather than due to cell-cycle change. PKB enhanced DNMT1 protein stability independent of de novo synthesis of any protein, which was attributed to down-regulation of N-terminal-120-amino-acids-dependent DNMT1 degradation via ubiquitin-proteasome pathway. Gsk3beta inhibitor rescued the decrease of DNMT1 by PKB inhibition, suggesting that Gsk3beta mediated the stabilization of DNMT1 by PKB. Then role of PKB regulating DNMT1 was investigated. Inhibition of PKB caused observable DNA hypomethylation and chromatin decondensation and DNMT1 overexpression partially reversed cell growth inhibition by PKB inhibition. In conclusion, our results suggested that PKB enhanced DNMT1 stability and maintained DNA methylation and chromatin structure, which might contribute to cancer cell growth.  相似文献   

15.
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter.  相似文献   

16.
17.
18.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) pathway is a critical intermediary for cell proliferation, differentiation, and survival. In the human colon cancer cell line SW1116, treatment with the DNA methyltransferase 1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) or the ERK-MAPK inhibitors PD98059 or rottlerin, or transient transfection with the MAP/ERK kinase (MEK)1/2 small interfering RNA down-regulates DNMT1 and proliferating cell nuclear antigen levels. In this report, we found that drug treatment or small interfering RNA transfection of SW1116 cells induced promoter demethylation of the p16(INK4A) and p21(WAF1) genes, which up-regulated their mRNA and protein expression levels. Flow cytometry revealed that rottlerin treatment induced cell cycle arrest at phase G(1) (p < 0.05). Thus, the ERK-MAPK inhibitor treatment or siRNA-mediated knockdown of ERK-MAPK decreases DNA methylation via down-regulating DNMT1 expression and other unknown mediator(s) in SW1116 colon cancer cells.  相似文献   

19.
Cancer stem cell (CSC) theory reveals a new insight into the understanding of tumorigenesis and metastasis. Recently, DNA methylation is suggested to be a potential epigenetic mechanism for maintenance of CSCs. What's more, studies have shown that DNA methyltransferase (DNMT) is essential for CSCs and deletion of DNMT can reduce tumorigenesis by limiting CSC pool. Therefore, targeting the epigenetic modifiers especially DNA methylation offers an optional strategy for treating human cancers. In the present study we found that DNMT inhibitor 5-Aza-2′-deoxycytidine (5-AzaDC) markedly reduced colorectal CSC abundance in vitro and suppressed liver metastatic tumor growth in vivo. And 5-AzaDC inhibited the expression of active β-catenin and down-regulated the Wnt signaling pathway. The Wnt inhibitors were frequently inactivated by promoter methylation in colorectal cancer; however analysis of TCGA data base showed that only the expression of SFRP1 was significantly reduced in tumors compared to normal tissues. In addition, restoring of SFRP1 expression inhibited the stem cell-like potential of colorectal cancer cells. Our results indicated that inhibition of DNMT blocked the self-renewal of colorectal CSCs and SFRP1 was essential for the maintenance of colorectal CSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号