首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Calsequestrin is a calcium binding protein present in the sarcoplasmic reticulum (SR) of animal muscle cells and is thought to be essential for the rapid uptake and release of Ca2+, and thus for the regulation of Ca2+-dependent cellular functions. Higher plant cells of red beet (Beta vulgaris L.) and cucumber (Cucumis sativus L.) contain a polypeptide of about Mr 55000 that cross-reacts with a monoclonal antibody raised against calsequestrin from rabbit skeletal muscle SR. In beet this protein changes its apparent molecular weight with pH as indicated in Western immunoblotting. Although this protein bound calcium it was not the dominant calcium-binding protein in red beet. Washing of beet root tissue leads to a slight increase of this polypeptide in microsomal fractions as indicated by immunoblotting. After immunoblotting to partially purified cell membrane fractions this polypeptide appeared to be predominantly associated with endoplasmic reticulum-enriched fractions. Immunogold labelling of ultrathin sections of cucumber hypocotyl using the anti-calsequestrin antibody showed that gold particles were very largely confined to the cytosol and often in close proximity to the ER. Clusters of up to nine gold particles were observed, often over small vesicular areas, as observed in some animal tissues. These results indicate that red beet and cucumber cells contain a protein which may be related to animal calsequestrin. It appears to be associated with the ER and could be involved in cellular calcium regulation.  相似文献   

2.
In mouse intestine, caveolae and caveolin‐1 (Cav‐1) are present in smooth muscle (responsible for executing contractions) and in interstitial cells of Cajal (ICC; responsible for pacing contractions). We found that a number of calcium handling/dependent molecules are associated with caveolae, including L‐type Ca2+ channels, Na+‐Ca2+ exchanger type 1 (NCX1), plasma membrane Ca2+ pumps and neural nitric oxide synthase (nNOS), and that caveolae are close to the peripheral endo‐sarcoplasmic reticulum (ER‐SR). Also we found that this assemblage may account for recycling of calcium from caveolar domains to SR through L‐type Ca + channels to sustain pacing and contractions. Here we test this hypothesis further comparing pacing and contractions under various conditions in longitudinal muscle of Cav‐1 knockout mice (lacking caveolae) and in their genetic controls. We used a procedure in which pacing frequencies (indicative of functioning of ICC) and contraction amplitudes (indicative of functioning of smooth muscle) were studied in calcium‐free media with 100 mM ethylene glycol tetra‐acetic acid (EGTA). The absence of caveolae in ICC inhibited the ability of ICC to maintain frequencies of contraction in the calcium‐free medium by reducing recycling of calcium from caveolar plasma membrane to SR when the calcium stores were initially full. This recycling to ICC involved primarily L‐type Ca2+ channels; i.e. pacing frequencies were enhanced by opening and inhibited by closing these channels. However, when these stores were depleted by block of the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump or calcium release was activated by carbachol, the absence of Cav‐1 or caveolae had little or no effect. The absence of caveolae had little impact on contraction amplitudes, indicative of recycling of calcium to SR in smooth muscle. However, the absence of caveolae slowed the rate of loss of calcium from SR under some conditions in both ICC and smooth muscle, which may reflect the loss of proximity to store operated Ca channels. We found evidence that these channels were associated with Cav‐1. These changes were all consistent with the hypothesis that a reduction of the extracellular calcium associated with caveolae in ICC of the myenteric plexus, the state of L‐type Ca2+ channels or an increase in the distance between caveolae and SR affected calcium handling.  相似文献   

3.
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.  相似文献   

4.
5.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sarcoplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2+ uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2+-ATPase activity in SR and changing of character of Ca2+ release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2+ transport of SR.  相似文献   

6.
Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV β1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.  相似文献   

7.
Cardiac sarcoplasmic reticulum (SR) contains an endogenous phosphorylation system that under specific conditions phosphorylates two proteins with apparent molecular masses of 150 and 130 kDa. The conditions for their phosphorylation are as for the skeletal muscle sarcalumenin and the histidine-rich Ca2+ binding protein (HCP) with respect to: (i) Ca2+ and high concentrations of NaF are required; (ii) phosphorylation is obtained with no added Mg2+ and shows a similar time course and ATP concentration dependence; (iii) inhibition by similar concentrations of La3+; (iv) phosphorylation is obtained with [γ-32P]GTP; (v) ryanodine binding is inhibited parallel to the phosphorylation of the two proteins. The endogenous kinase is identified as casein kinase II (CK II) based on its ability to use GTP as effectively as ATP, and its inhibition by La3+. The association of CK II with the cardiac SR, even after EGTA extraction at alkaline pH, is demonstrated using antibodies against CK II. The cardiac 130 kDa protein is identified as sarcalumenin based on its partial amino acid sequence and its blue staining with Stains-All. Cardiac sarcalumenin is different from the skeletal muscle protein based on electrophoretic mobilities, immunological analysis, peptide and phosphopeptide maps, as well as amino acid sequencing. Preincubation of SR with NaF and ATP, but not with NaF and AMP-PNP caused strong inhibition of ryanodine binding. This is due to decrease in Ca2+- and ryanodine-binding affinities of the ryanodine receptor (RyR) by about 6.6 and 18-fold, respectively. These results suggest that cardiac sarcalumenin is an isoform of the skeletal muscle protein. An endogenous CK II can phosphorylate sarcalumenin, and in parallel to its phosphorylation the properties of the ryanodine receptor are modified. Received: 15 December 1998/Revised: 25 March 1999  相似文献   

8.
The calcium release channel (CRC)/ryanodine receptor (RyRec) has been identified as the foot structure of the sarcoplasmic reticulum (SR) and provides the pathway for calcium efflux required for excitation-contraction coupling in skeletal muscle. The CRC has previously been reported to consist of four identical 565-kDa protomers. We now report the identification of a 12-kDa protein which is tightly associated with highly purified RyRec from rabbit skeletal muscle SR. N-terminal amino acid sequencing and cDNA cloning demonstrates that the 12-kDa protein from fast twitch skeletal muscle is the binding protein for the immunosuppressant drug FK506. In humans, FK506 binds to the 12-kDa FK506-binding protein (FKBP12) and blocks calcium-dependent T cell activation. We find that FKBP12 and the RyRec are tightly associated in skeletal muscle SR on the basis of: 1) co-purification through sequential heparin-agarose, hydroxylapatite, and size exclusion chromatography columns; 2) coimmunoprecipitation of the RyRec and FKBP12 with anti-FKBP12 antibodies; and 3) subcellular localization of both proteins to the terminal cisternae of the SR, and not in the longitudinal tubules of SR, in fast twitch skeletal muscle. The molar ratio of FKBP12 to RyRec in highly purified RyRec preparations is approximately 1:4, indicating that one FKBP12 molecule is associated with each calcium release channel/foot structure.  相似文献   

9.
Junctate is a newly identified sarcoplasmic reticulum (SR) Ca2+ binding protein, but its function in cardiac muscle has remained unclear. Our previous study showed that chronic over-expression of junctate in transgenic mice led to altered SR functions and development of severe hypertrophy. In this study, we identified the interaction of junctate with SERCA2a by co-immunoprecipitation and GST-pull-down assay. This interaction was inhibited by higher Ca2+ concentration. Immunolocalization assays also showed that junctate and SERCA2a were co-localized in the SR of cardiomyocytes. Direct binding of the C-terminal region of junctate (amino acids 79-270) and luminal domain of SERCA2a (amino acids 70-89) was observed by deletion mutation experiments. Adenovirus-mediated transient over-expression of junctate in cardiomyocytes showed a reduced decay time of Ca2+ transients and increased oxalate-supported SERCA2 Ca2+ uptake, suggesting an increased activity of SERCA2a. Taken together, according to our data, junctate may play an important role in the regulation of SR Ca2+ cycling through the interaction with SERCA2a in the murine heart.  相似文献   

10.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

11.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

12.
Lamboley CR  Pape PC 《Cell calcium》2011,50(6):530-547
One aim of this article was to determine the resting concentration of free Ca2+ in the sarcoplasmic reticulum (SR) of frog cut skeletal muscle fibers ([Ca2+]SR,R) using the calcium absorbance indicator dye tetramethylmurexide (TMX). Another was to determine the ratio of [Ca2+]SR,R to TMX's apparent dissociation constant for Ca2+ (Kapp) in order to establish the capability of monitoring [Ca2+]SR(t) during SR Ca2+ release – a signal needed to determine the Ca2+ permeability of the SR. To reveal the properties of TMX in the SR, the surface membrane was rapidly permeabilized with saponin to rapidly dissipate myoplasmic TMX. Results indicated that the concentration of Ca-free TMX in the SR was 2.8-fold greater than that in the myoplasm apparently due to binding of TMX to sites in the SR. Taking into account that such binding might influence Kapp as well as a dependence of Kapp on TMX concentration, the results indicate an average [Ca2+]SR,R ranging from 0.43 to 1.70 mM. The ratio [Ca2+]SR,R/Kapp averaged 0.256, a relatively low value which should not depend on factors influencing Kapp. As a result, the time course of [Ca2+]SR(t) in response to electrical stimulation is well determined by, and approximately linearly related to, the active TMX absorbance signal.  相似文献   

13.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

14.
TRPV1 represents a non-selective cation channel activated by capsaicin, acidosis and high temperature. In the central nervous system where TRPV1 is highly expressed, its physiological role in nociception is clearly identified. In skeletal muscle, TRPV1 appears implicated in energy metabolism and exercise endurance. However, how as a Ca2+ channel, it contributes to intracellular calcium concentration ([Ca2+]i) maintenance and muscle contraction remains unknown. Here, as in rats, we report that TRPV1 is functionally expressed in mouse skeletal muscle. In contrast to earlier reports, our analysis show TRPV1 presence only at the sarcoplasmic reticulum (SR) membrane (preferably at the longitudinal part) in the proximity of SERCA1 pumps. Using intracellular Ca2+ imaging, we directly accessed to the channel functionality in intact FDB mouse fibers. Capsaicin and resiniferatoxin, both agonists as well as high temperature (45°C) elicited an increase in [Ca2+]i. TRPV1-inhibition by capsazepine resulted in a strong inhibition of TRPV1-mediated functional responses and abolished channel activation. Blocking the SR release (with ryanodine or dantrolene) led to a reduced capsaicin-induced Ca2+ elevation suggesting that TRPV1 may participate to a secondary SR Ca2+ liberation of greater amplitude. In conclusion, our experiments point out that TRPV1 is a functional SR Ca2+ leak channel and may crosstalk with RyR1 in adult mouse muscle fibers.  相似文献   

15.
 为观察胞外Ca2 + 内流和肌浆网Ca2 + 释放两种来源的Ca2 + 对cPKCα转位激活的影响 ,揭示PKC在去极化 nAChR转录偶联中的作用 ,构建了pPKCα EGFP N1融合蛋白真核基因表达载体 .转染C2C1 2肌细胞后 ,采用激光共聚焦显微镜记录了KC1或咖啡因处理所引起的细胞Ca2 + 波变化及PKCα GFP融合蛋白在细胞内的分布 .结果提示 ,只有用KC1处理引起细胞膜去极化时 ,伴随Ca2 +内流 ,才能观察到PKCα GFP绿色荧光在细胞内发生的细胞浆至细胞膜分布变化 .然而 ,采用肌浆网Ca2 + 通道激动剂咖啡因刺激肌细胞 ,使肌浆网中Ca2 + 释放 ,未见PKCα GFP绿色荧光在浆、膜分布发生任何变化 .结果提示 ,去极化时外Ca2 + 内流可引起PKCα转位激活 ,肌浆网Ca2 + 释放对PKCα的转位激活没有影响 .  相似文献   

16.
The calcium transport mechanism of cardiac sarcoplasmic reticulum (SR) is regulated by a phosphoregulatory mechanism involving the phosphorylation-dephosphorylation of an integral membrane component, termed phospholamban. Phospholamban, a 27,000 Da proteolipid, contains phosphorylation sites for three independent protein kinases: 1) cAMP-dependent, 2) Ca2+-calmodulin-dependent, and 3) Ca2+-phospholipid-dependent. Phosphorylation of phospholamban by any one of these kinases is associated with stimulation of the calcium transport rates in isolated SR vesicles. Dephosphorylation of phosphorylated phospholamban results in the reversal of the stimulatory effects produced by the protein kinases. Studies conducted on perfused hearts have shown that during exposure to beta-adrenergic agents, a good correlation exists between the in situ phosphorylation of phospholamban and the relaxation of the left ventricle. Phosphorylation of phospholamban in situ is also associated with stimulation of calcium transport rates by cardiac SR, similar to in vitro findings. Removal of beta-adrenergic agents results in the reversal of the inotropic response and this is associated with dephosphorylation of phospholamban. These findings indicate that a phospho-regulatory mechanism involving phospholamban may provide at least one of the controls for regulation of the contractile properties of the myocardium.  相似文献   

17.
Two-dimensional protein crystals of the calcium pump protein of sarcoplasmic reticulum (SR) from fast skeletal muscle were induced using Na3VO3 as first described by Dux and Martonosi. These crystals exhibit repeat rows 11 nm apart which contain discrete units with 7 nm repeats. Four different methods of sample preparation for electron microscopy, i.e., negative staining, freezedrying, freeze-fracturing, and thin-sectioning electron microscopy, each give complimentary repeat units. The SR-membrane crystals exhibit surface structure by the freeze-drying technique and row-like structures on the normally smooth outer face of normal SR. The formation of the membrane crystals is dependent on the pH and concentration of the vanadate. Only conditions favoring the presence of decavanadate yield crystals. At low concentrations and neutral pH, decavanadate is unstable and with time converts to smaller oligomers and the monomer. The presence of membrane crystals was correlated with the life span of the decavanadate. Membrane crystals were obtained in the SR membrane from fast twitch muscle from light and heavy SR, referable to longitudinal and terminal cisternae as well as from reconstituted SR. Canine cardiac SR did not crystallize under these conditions.Abbreviations Tris (tris[hydroxymethyl])aminomethane - TES (N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid), 2-(2-hydroxy-1-bis[hydroxymethyl]ethyl)aminoethanesulfonic acid - SR sarcoplasmic reticulum - CPP calcium pump protein Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

18.
Although it is well-accepted that the phosphatidylinositol signalling transduction pathway, producing inositol-1,4,5-P3 (InsP3) and inositol-1,3,4,5-P4 (InsP4) as second messengers, functions in heart muscle, virtually nothing is known about the roles of the higher inositol polyphosphates such as inositolhexakisphosphate (InsP6). This study demonstrates that InSP6 has the ability to bind intracellularly, with different binding characteristics, to different myocardial membranes. Binding to purified sarcoplasmic reticulum (SR) membranes, purified sarcolemmal (SL) membranes as well as to viable mitochondria were characterized. Binding to all these membranes display high as well as low affinity binding sites, with differing affinities. Kd values of binding to SR were 32 and 383 nM, to SL 61 and 1312 nM, while those of mitochondrial binding were 230 and 2200 nM respectively.InsP4 binding was also investigated and displayed the following characteristics: to SR, one low affinity binding site (Kd = 203 nM) and to SL, a high as well as a low affinity binding site with Kd values of 41 and 2075 nM respectively. Presence of InsP3, the second messenger for SR calcium release, at concentrations of 1 nM, elevated the binding of InsP4 to SR and SL by a mean of 30% and 20% respectively.Fractionation of SR and SL membranes on sucrose density gradients, after solubilization with CHAPS, indicated that InsP6 bound to two separate protein peaks in both these membranes, while InsP4 bound to only one. In SR membranes, InsP4 bound preferentially to a protein separating at high sucrose density while it bound to a protein separating at low sucrose density in SL membranes.  相似文献   

19.
Summary Our interest in the role of sulfhydryl groups (SH) in regulating or altering transport across biological membranes has focused on the significance of a critical SH group associated with the Ca2+-release protein from skeletal muscle sarcoplasmic reticulum (SR). We have shown that binding of heavy metals to this group or oxidation of this sulfhydryl to a disulfide induces rapid Ca2+ release from SR vesicles [1, 2] and induces contraction in skinned muscle fibers [3]. Several models are described in which oxidation and reduction might control the state of the Ca2+-release channel from SR.Abbreviations DTT Dithiothreitol, redox. - oxidation-reduction - SDS Sodium Dodecyl Sulfate - SH Sulfhydryl - SR Sarcoplasmic Reticulum - T-tubule Transverse tubule  相似文献   

20.
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号