首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A theoretical study of structural, electronic, topological and vibrational parameters of the ternary hydrogen-bonded complexes C2H4O···2HF, C2H5N···2HF and C2H4S···2HF is presented here. Different from binary systems with a single proton donor, the tricomplexes have the property of forming multiple hydrogen bonds, which are analyzed from a structural and vibrational point of view, but verified only by means of the quantum theory of atoms in molecules (QTAIM). As traditionally done in the hydrogen bond theory, the charge transfer between proton donors and acceptors was computed using the CHELPG calculations, which also revealed agreement with dipole moment variation and a cooperative effect on the tricomplexes. Furthermore, redshift events on proton donor bonds were satisfactorily identified, although, in this case, an absence of experimental data led to the use of a theoretical argument to interpret these spectroscopic shifts. It was therefore the use of the QTAIM parameters that enabled all intermolecular vibrational modes to be validated. The most stable tricomplex in terms of energy was identified via the strength of the hydrogen bonds, which were modeled as directional and bifurcated.  相似文献   

2.
1. The effects in the cow of intraruminal infusions of acetic acid, propionic acid or butyric acid on the secretion of the component fatty acids of the milk fat, and of these acids and of lactic acid on the composition of the blood plasma of the jugular vein, have been studied. 2. The infusion of acetic acid or butyric acid increased the yield of the C4–C16 acids of milk fat but decreased the yield of C18 acids. The infusion of propionic acid decreased the yields of all major component acids except palmitic acid and possibly lauric acid. 3. The changes in the concentrations in blood plasma of glucose and of ketone bodies were consistent with the glucogenic effect of propionic acid and the ketogenic effects of butyric acid and acetic acid. The effects of lactic acid were not consistent from cow to cow. Only with the infusion of acetic acid was a significant increase in the concentration of total volatile fatty acids in blood plasma found. Infusions of butyric acid and of propionic acid tended to depress the concentration of citric acid in the blood plasma and infusion of acetic acid increased it. No consistent effects of the infused acids on the concentration in blood plasma of esterified cholesterol, free cholesterol, triglyceride or phospholipid were observed. 4. The possibility is discussed that the effects of the infused acids on milk-fat secretion are caused through an alteration of the concentrations of precursors of milk fat in mammary arterial blood.  相似文献   

3.
The present work illustrated an accurate GC/MS measurement for the low isotopomer enrichment assay of formic acid, acetic acid, propionic aicd, butyric acid, and pentanoic acid. The pentafluorobenzyl bromide derivatives of these very short chain fatty acids have high sensitivity of isotopoic enrichment due to their low natural isotopomer distribution in negative chemical ionization mass spectrometric mode. Pentafluorobenzyl bromide derivatization reaction was optimized in terms of pH, temperature, reaction time, and the amount of pentafluorobenzyl bromide versus sample. The precision, stability, and accuracy of this method for the isotopomer analysis were validated. This method was applied to measure the enrichments of formic acid, acetic acid, and propionic acid in the perfusate from rat liver exposed to Krebs–Ringer bicarbonate buffer only, 0–1 mM [3,4-13C2]-4-hydroxynonanoate, and 0–2 mM [5,6,7-13C3]heptanoate. The enrichments of acetic acid and propionic acid in the perfusate are comparable to the labeling pattern of acetyl-CoA and propionyl-CoA in the rat liver tissues. The enrichment of the acetic acid assay is much more sensitive and precise than the enrichment of acetyl-CoA by LC-MS/MS. The reversibility of propionyl-CoA from succinyl-CoA was confirmed by the low labeling of M1 and M2 of propionic acid from [5,6,7-13C3]heptanoate perfusates.  相似文献   

4.
Cyclopropane carboxylic acid (CCA) at 1 to 5 millimolar, unlike related cyclopropane ring analogs of 1-aminocyclopropane-1-carboxylic acid (ACC) which were virtually ineffective, inhibited C2H4 production, and this inhibition was nullified by ACC. Inhibition by CCA is not competitive with ACC since there is a decline, rather than an increase, in native endogenous ACC in the presence of CCA. Similarly, short-chain organic acids from acetic to butyric acid and α-aminoisobutyric acid inhibited C2H4 production at 1 to 5 millimolar and lowered endogenous ACC levels. These inhibitions, like that of CCA, were overcome with ACC. Inhibitors of electron transfer and oxidative phosphorylation effectively inhibited ACC conversion to C2H4 in pea and apple tissues. The most potent inhibitors were 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) which virtually eliminated ACC-stimulated C2H4 production in both tissues. Still other inhibitors of the conversion of ACC to C2H4 were putative free radical scavengers which reduced chemiluminescence in the free radical-activated luminol reaction. These inhibitor studies suggest the involvement of a free radical in the reaction sequence which converts ACC to C2H4. Additionally, the potent inhibition of this reaction by uncouplers of oxidative phosphorylation (DNP and CCCP) suggest the involvement of ATP or the necessity for an intact membrane for C2H4 production from ACC. In the latter case, CCCP may be acting as a proton ionophore to destroy the membrane integrity necessary for C2H4 production.  相似文献   

5.
The proton magnetic resonance spectrum of thyrotropin releasing factor (TRF) in solution in deuterium oxide and deuterated dimethylsulfoxide (DMSO–d6) has been analyzed. Two forms differing in cistrans isomerism about the His-Pro peptide bond are observed. From the temperature dependence of chemical shift of the amide protons, it is concluded that TRF in DMSO–d6 does not contain intramolecular hydrogen bonds. Measurement of NH? CαH coupling constant provides an estimate of the histidine dihedral angle ?. Structural information about the histidine side-chain is deduced from CαH? CβH coupling constants and from the nonequivalence of the two prolyl δ-protons. In DMSO–d6, there is evidence for a tautomeric equilibrium corresponding to an exchange of imidazole proton between the two nitrogen atoms N-δ and N-ε. In water, the N-εH tautomer is found to be the predominant tautomeric form of the imidazole ring. These results in combination with energy calculation, vibrational analysis, and carbon nmr studies allow the determination of the conformationof TRF.  相似文献   

6.
Summary CP-60,993, 19-epi-dianemycin, is a novel polycyclic ether antibiotic produced byStreptomyces hygroscopicus ATCC 39305. Fermentation recovery, purification and crystallization were achieved using standard procedures. CP-60,993 was characterized as a monocarboxylic acid. Elemental analysis suggested a molecular formula of C47H78O14 for the free acid and C47H77O14 Na for the sodium salt. Crystalline form CP-60,993 sodium salt shows the following properties: m.p. 193205°C, E 1 cm 1% =157 at 232 nm, [] D 25°C +11.0 (c 1, methanol). The structure, determined by MS, PMR and CMR, differs from dianemycin only in the stereochemistry at position 19. This was confirmed by X-ray crystallography carried out on the rubidium salt of CP-60,993. It exhibited activity in vitro against Gram-positive and anaerobic bacteria, efficacy againstEimeria coccidia in vivo in poultry, and stimulation in vitro of rumen propionic acid production.  相似文献   

7.
In the paper are described studies of the double proton transfer (DPT) processes in the cyclic dimer of acetic acid in the gas phase using Car-Parrinello (CPMD) and path integral molecular dynamics (PIMD). Structures, energies and proton trajectories have been determined. The results show the double proton transfer in 450 K. In the classical dynamics (CPMD) a clear process mechanism can be identified, where asynchronized DPT arises due to coupling between the O-H stretching oscillator and several low energy intermolecular vibrational modes. The DPT mechanism is also asynchronic when quantum tunneling has been allowed in the simulation. It has been found that the calculated values of barrier height for the proton transfer depends very strongly on the used approaches. Barrier received from the free-energy profile at the CPMD level is around 4.5 kcal mol-1 whereas at the PIMD level is reduced to 1 kcal mol-1. The nature of bonding in acetic acid dimer and rearrangement of electron density due to the proton movement has been also studied by the topological analysis of Electron Localization Function and Electron Localizability Indicator function.  相似文献   

8.
The ground-state structure and excited-state isomerization dynamics of the Pr and Pfr forms of phytochrome Cph1 are investigated using resonance Raman intensity analysis. Electronic absorption and stimulated resonance Raman spectra of Pr and Pfr are presented; vibronic analysis of the Raman intensities and absorption spectra reveals that both conformers exist as a single, homogeneous population of molecules in the ground state. The homogeneous and inhomogeneous contributions to the overall electronic broadening are determined, and it is found that the broadening is largely homogeneous in nature, pointing to fast excited-state decay. Franck-Condon displacements derived from the Raman intensity analysis reveal the initial atomic motions in the excited state, including the highly displaced, nontotally symmetric torsional and C15–H HOOP modes that appear because of symmetry-reducing distortions about the C14–C15 and C15=C16 bonds. Pfr is especially well primed for ultrafast isomerization and torsional Franck-Condon analysis predicts a <200 fs Pfr → Pr isomerization. This time is significantly faster than the observed 700 fs reaction time, indicating that the Pfr S1 surface has a D-ring rotational barrier caused by steric interactions with the protein.  相似文献   

9.
Summary 13C NMR relaxation data have been used to determine dipolar auto- and cross-correlation times for the di- and tripeptides GK, KG and GKG, primarily to analyze lysine side-chain motional dynamics. In general, correlation times are largest for backbone positions and decrease on going through the lysine side chain, consistent with the idea of increased mobility at C and C methylenes. Correlation times, however, vary with the peptide ionization state. In the zwitterionic state of GK, for example, both auto-and cross-correlation times are at their maximum values, indicating reduced internal motions probably resulting from intramolecular electrostatic interactions. Modifying the charge state increases motional fluctuations. Activation energies determined from the temperature dependence of CH rotational autocorrelation times at neutral pH are approximately equal for glycine and lysine C and lysine C and C positions (4.1±0.2 to 4.5±0.2 kcal/mol) and tend to decrease slightly for lysine C and C (3.8±0.2 to 4.3±0.2 kcal/mol). The sign of lysine side-chain cross-correlations could not be explained by using any available rotational model, including one parameterized for multiple internally restricted rotations and anisotropic overall tumbling. Molecular and stochastic dynamics calculations were performed to obtain insight into correlated internal rotations and coupled overall tumbling and internal motions. Relatively strong correlations were found for i,i+1 backbone and lysine side-chain internal bond rotations. Stochastic dynamics calculations were more successful at explaining experimentally observed correlation times. In the fully charged state, a preferred conformation was detected with an all-trans lysine side chain.Abbreviations rf radio frequency - GK dipeptide glycine-lysine - KG dipeptide lysine-glycine - GKG tripeptide glycine-lysine-glycine  相似文献   

10.
《BBA》2020,1861(10):148239
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.  相似文献   

11.
The batch fermentations were conducted using lactose as the substrate at pH 6.5 and temperature 30°C. Average batch kinetic data was eventually used to develop an unstructured mathematical model. The kinetic parameters of the model were determined by non-linear regression technique using the batch experimental results. Parametric sensitivity analysis showed the maximum specific substrate consumption rate (rSmax) and the maintenance energy constant (mS) to be the most sensitive parameters. The experimental observations in batch fermentation were close to the model predictions. The batch model was extrapolated to identify nutrient feeding strategies, which were tested successfully for two different fed-batch fermentations. It demonstrated enhanced propionic acid productivity. The developed model was found suitable for the design of feeding strategies to increase propionic acid production in fed-batch mode of reactor operation.  相似文献   

12.
D.R. Body 《Phytochemistry》1974,13(8):1527-1530
The neutral lipids of white clover leaves and stems have been separated into wax esters, free fatty acids, free fatty alcohols, free sterols, triglycerides and hydrocarbons. The wax esters were mainly of C18 di- and tri-unsaturated fatty acids and C30 fatty alcohol. Linolenic acid was the predominant free fatty acid and triacontanol was the principal free fatty alcohol. Of the hydrocarbons, C29 and C31 were present in the largest amounts.  相似文献   

13.
Solid‐state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the 1H decoupling frequency; (ii) 13C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of 1H‐13C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C‐Cα or N‐Cα bonds was found on increasing the added water content up to 47 wt%D2O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2 1H NMR measurements. Also, our wideline 1H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ~15‐fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent “bound water/free water” exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 246–256, 2014.  相似文献   

14.
Summary Batch propionic acid fermentations by Propionibacterium acidipropionici with lactose, glucose, and lactate as the carbon source were studied. In addition to propionic acid, acetic acid, succinic acid and CO2 were also formed from lactose or glucose. However, succinic acid was not produced in a significant amount when lactate was the growth substrate. Compared to fermentations with lactose or glucose at the same pH, lactate gave a higher propionic acid yield, lower cell yield, and lower specific growth rate. The specific fermentation or propionic acid production rate from lactate was, however, higher than that from lactose. Since about equimolar acid products would be formed from lactate, the reactor pH remained relatively unchanged throughout the fermentation and would be easier to control when lactate was the growth substrate. Therefore, lactate would be a preferred substrate over lactose and glucose for propionic acid production using continuous, immobilized cell bioreactors. Correspondence to: S. T. Yang  相似文献   

15.
A metric of nanoparticle toxicity is the passive permeability rate through cellular membranes. To assess the influence of nanoparticle morphology on this process, the permeability of buckyball-sized molecules through a representative lipid bilayer was investigated by molecular-dynamics simulation. When C60 was compared with a prototypical opened C60 molecule and a representative combustion-generated particle, C68H29, the calculated free-energy profiles along the permeation coordinate revealed a sizable variation in form and depth. The orientation of the anisotropic molecules was determined by monitoring the principal axis corresponding to the largest moment of inertia, and free rotation was shown to be hindered in the bilayer interior. Diffusion constant values of the permeant molecules were calculated from a statistical average of seven to 10 trajectories at five locations along the permeation coordinate. A relatively minor variation of the values was observed in the bilayer interior; however, local resistance values spanned up to 24 orders of magnitude from the water layer to the bilayer center, due primarily to its exponential dependence on free energy. The permeability coefficient values calculated for the three similarly sized but structurally distinct nanoparticles showed a significant variance. The use of C60 to represent similarly sized carbonaceous nanoparticles for assessments of toxicity is questioned.  相似文献   

16.
In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.  相似文献   

17.
The proton‐driven flagellar motor of Salmonella enterica can accommodate a dozen MotA/B stators in a load‐dependent manner. The C‐terminal periplasmic domain of MotB acts as a structural switch to regulate the number of active stators in the motor in response to load change. The cytoplasmic loop termed MotAC is responsible for the interaction with a rotor protein, FliG. Here, to test if MotAC is responsible for stator assembly around the rotor in a load‐dependent manner, we analyzed the effect of MotAC mutations, M76V, L78W, Y83C, Y83H, I126F, R131L, A145E and E155K, on motor performance over a wide range of external load. All these MotAC mutations reduced the maximum speed of the motor near zero load, suggesting that they reduce the rate of conformational dynamics of MotAC coupled with proton translocation through the MotA/B proton channel. Dissociation of the stators from the rotor by decrease in the load was facilitated by the M76V, Y83H and A145E mutations compared to the wild‐type motor. The E155K mutation reduced the number of active stators in the motor from 10 to 6 under extremely high load. We propose that MotAC is responsible for load‐dependent assembly and disassembly dynamics of the MotA/B stator units.  相似文献   

18.
The coherent 11-cis-retinal photoisomerization dynamics in bovine rhodopsin was studied by femtosecond time-resolved laser absorption spectroscopy at 30-fs resolution. Femtosecond pulses of 500, 535, and 560 nm wavelength were used for rhodopsin excitation to produce different initial Franck-Condon states and relevant distinct values of the vibrational energy of the molecule in its electron excited state. Time evolution of the photoinduced rhodopsin absorption spectra was monitored after femtosecond excitation in the spectral range of 400–720 nm. Oscillations of the time-resolved absorption signals of rhodopsin photoproducts represented by photorhodopsin570 with vibrationally-excited all-trans-retinal and rhodopsin498 in its initial state with vibrationally-excited 11-cis-retinal were studied. These oscillations reflect the dynamics of coherent vibrational wave-packets in the ground state of photoproducts. Fourier analysis of these oscillatory components has revealed frequencies, amplitudes, and initial phases of different vibrational modes, along which the motion of wave-packets of both photoproducts occurs. The main vibrational modes established are 62, 160 cm−1 and 44, 142 cm−1 for photorhodopsin570 and for rhodopsin498, respectively. These vibrational modes are directly involved in the coherent reaction under the study, and their amplitudes in the power spectrum obtained through the Fourier transform of the kinetic curves depend on the excitation wavelength of rhodopsin.  相似文献   

19.
U Hahn  H Hanssum  H Rüterjans 《Biopolymers》1985,24(7):1147-1156
The anisotropic rotational motion of the backbone and the side chains of poly(L -glutamic acid) in the α-helical structure was investigated using the 13C-T1 and T2 relaxation times of all carbon atoms with directly attached protons, obtained at a 13C-Larmor frequency of 67.89 MHz. The evaluation of the nmr data was carried out according to the previously derived anisotropic diffusion model, in which the macromolecule is considered a rigid rod. The rotation of the backbone is characterized by two diffusion constants, D1 and D3, describing the rotation perpendicular to and around the symmetry axis. The additional internal motion of the Cβ-methylene group is described as a jump process with a jump rate, k1, between two allowed rotametric states. Steric considerations indicate that the occupation of the third rotameric position is forbidden. The rotation of the Cγ-methylene group is decribed as a one-dimensional diffusion process around the Cβ–Cγ bond. Investigation of the temperature dependence of the relaxation parameters led to the temperature dependence of the dynamic parameters. Activation energies were determined from these data. The dynamic parameters obtained for poly(L -glutamic acid) at 291 K are compared with the corresponding results of a previous study of poly(L -lysine). The development of an anisotropic diffusion model for the motions of the rod-shaped poly(L -lysine) α-helix and its application to the interpretation of the 13C-relaxation data of this molecule have already been published previously. In this model, both the overall molecular tumbling and the various internal motions have been characterized by diffusion constants or jump rates typical for each process. These dynamic parameters can be calculated from the spin–lattice relaxation times, the spin–spin relaxation times and the NOE factors of the Cα, Cβ, and Cγ nuclei of the polypetide. In the present paper, we describe the application of the above-mentioned dynamic model to the interpretation of 13C-relaxation studies of a further homopolypeptide, poly(L -glutamic acid), in the α-helical structure. Furthermore, we studied the temperature dependence of the relaxation times of this polymer and determined the anisotropic diffusion parameters at each temperature. From their temperature dependence and from comparison of our present results with the data of our previous study of poly(L -lysine), we were able to derive new insights into the intramolecular diffusion processes and the excitation of various motions.  相似文献   

20.
The host-specific toxin from Helminthosporiumcarbonum race 1 was purified from culture filtrates by solvent extraction, gel filtration, and high pressure liquid chromatography. High resolution mass spectrometry of the purified toxin gave a MW of 436.2318 and an elemental composition C21H32N4O6. Amino acid analysis and proton and13C-NMR indicated a peptide containing four amino acids. Their sequence was determined by gas chromatography mass spectrometry. Finally, digestion of the amino acids with D- and L-amino acid oxidases gave the complete structure cyclo[(L-2-amino-9, 10-epoxy-8-oxodecanoyl)-D-prolyl-L-alanyl-L-alanyl].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号