首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Human wild-type cardiac troponin T, I, C and five troponin T mutants (I79N, R92Q, F110I, E244D, and R278C) causing familial hypertrophic cardiomyopathy were expressed in Escherichia coli, and then were purified and incorporated into rabbit cardiac myofibrils using a troponin exchange technique. The Ca2+-sensitive ATPase activity of these myofibrillar preparations was measured in order to examine the functional consequences of these troponin mutations. An I79N troponin T mutation was found to cause a definite increase in Ca2+ sensitivity of the myofibrillar ATPase activity without inducing any significant change in the maximum level of ATPase activity. A detailed analysis indicated the inhibitory action of troponin I to be impaired by the I79N troponin T mutation. Two more troponin T mutations (R92Q and R278C) were also found to have a Ca2+-sensitizing effect without inducing any change in maximum ATPase activity. Two other troponin T mutations (F110I and E244D) had no Ca2+-sensitizing effects on the ATPase activity, but remarkably potentiated the maximum level of ATPase activity. These findings indicate that hypertrophic cardiomyopathy-linked troponin T mutations have at least two different effects on the Ca2+-sensitive ATPase activity, Ca2+-sensitization and potentiation of the maximum level of the ATPase activity.  相似文献   

2.
Human cardiac Troponin I (cTnI) is the first sarcomeric protein for which mutations have been associated with restrictive cardiomyopathy. To determine whether five mutations in cTnI (L144Q, R145W, A171T, K178E, and R192H) associated with restrictive cardiomyopathy were distinguishable from hypertrophic cardiomyopathy-causing mutations in cTnI, actomyosin ATPase activity and skinned fiber studies were carried out. All five mutations investigated showed an increase in the Ca2+ sensitivity of force development compared with wild-type cTnI. The two mutations with the worst clinical phenotype (K178E and R192H) both showed large increases in Ca2+ sensitivity (deltapCa50 = 0.47 and 0.36, respectively). Although at least one of these mutations is not in the known inhibitory regions of cTnI, all of the mutations investigated caused a decrease in the ability of cTnI to inhibit actomyosin ATPase activity. Mixtures of wild-type and mutant cTnI showed that cTnI mutants could be classified into three different groups: dominant (L144Q, A171T and R192H), equivalent (K178E), or weaker (R145W) than wild-type cTnI in actomyosin ATPase assays in the absence of Ca2+. Although most of the mutants were able to activate actomyosin ATPase similarly to wild-type cTnI, L144Q had significantly lower maximal ATPase activities than any of the other mutants or wild-type cTnI. Three mutants (L144Q, R145W, and K178E) were unable to fully relax contraction in the absence of Ca2+. The inability of the five cTnI mutations investigated to fully inhibit ATPase activity/force development and the generally larger increases in Ca2+ sensitivity than observed for most hypertrophic cardiomyopathy mutations would likely lead to severe diastolic dysfunction and may be the major physiological factors responsible for causing the restrictive cardiomyopathy phenotype in some of the genetically affected individuals.  相似文献   

3.
Two novel mutations (G159D and L29Q) in cardiac troponin C (CTnC) associate their phenotypic outcomes with dilated (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Current paradigms propose that sarcomeric mutations associated with DCM decrease the myofilament Ca2+ sensitivity, whereas those associated with HCM increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the Ca2+ sensitivities of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes. The G159D-CTnC decreases the Ca2+ sensitivity of tension and ATPase activation and reduces the maximal ATPase activity when incorporated into regulated actomyosin filaments. Under the same conditions, the L29Q-CTnC has no effect. Surprisingly, changes in the apparent G159D-CTnC Ca2+ affinity measured by tension in fibers do not occur in the isolated CTnC, and large changes measured in the isolated L29Q-CTnC do not manifest in the fiber. These counterintuitive findings are justified through a transition in Ca2+ affinity occurring at the level of cardiac troponin and higher, implying that the true effects of these mutations become apparent as the hierarchical level of the myofilament increases. Therefore, the contractile apparatus, representing a large cooperative machine, can provide the potential for a change (G159D) or no change (L29Q) in the Ca2+ regulation of contraction. In accordance with the clinical outcomes and current paradigms, the desensitization of myofilaments from G159D-CTnC is expected to weaken the contractile force of the myocardium, whereas the lack of myofilament changes from L29Q-CTnC may preserve diastolic and systolic function.  相似文献   

4.
The effects of Troponin T (TnT) mutants R141W and DeltaK210, the only two currently known mutations in TnT that cause dilated cardiomyopathy(DCM) independent of familial hypertrophic cardiomyopathy (FHC), and TnT-K273E, a mutation that leads to a progression from FHC to DCM, were investigated. Studies on the Ca2+ sensitivity of force development in porcine cardiac fibers demonstrated that TnT-DeltaK210 caused a significant decrease in Ca2+ sensitivity, whereas the TnT-R141W did not result in any change in Ca2+ sensitivity when compared with human cardiac wild-type TnT (HCWTnT). TnT-DeltaK210 also caused a decrease in maximal force when compared with HCWTnT and TnT-R141W. In addition, the TnT-DeltaK210 mutant decreased maximal ATPase activity in the presence of Ca2+. However, the TnT-K273E mutation caused a significant increase in Ca2+ sensitivity but behaved similarly to HCWTnT in actomyosin activation assays. Inhibition of ATPase activity in reconstituted actin-activated myosin ATPase assays was similar for all three TnT mutants and HCWTnT. Additionally, circular dichroism studies suggest that the secondary structure of all three TnT mutants was similar to that of the HCWTnT. These results suggest that a rightward shift in Ca2+ sensitivity is not the only determinant for the phenotype of DCM.  相似文献   

5.
Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca2+ sensitivity of contraction. Mutations in the Ca2+ sensor, troponin C (TnC), were generated to increase/decrease the Ca2+ sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca2+ sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca2+ sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca2+ sensitivity, maximal force recovery, and activation of the ATPase at high [Ca2+]). Steady-state fluorescence was utilized to assess Ca2+ affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca2+ sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased α-helical content correlated with increased Ca2+ sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca2+ sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca2+ sensitivity, maximal force, and ATPase activation of some mutants.  相似文献   

6.
We have compared the in vitro regulatory properties of recombinant human cardiac troponin reconstituted using wild type troponin T with troponin containing the DeltaLys-210 troponin T mutant that causes dilated cardiomyopathy (DCM) and the R92Q troponin T known to cause hypertrophic cardiomyopathy (HCM). Troponin containing DeltaLys-210 troponin T inhibited actin-tropomyosin-activated myosin subfragment-1 ATPase activity to the same extent as wild type at pCa8.5 (>80%) but produced substantially less enhancement of ATPase at pCa4.5. The Ca(2+) sensitivity of ATPase activation was increased (DeltapCa(50) = +0.2 pCa units) and cooperativity of Ca(2+) activation was virtually abolished. Equimolar mixtures of wild type and DeltaLys-210 troponin T gave a lower Ca(2+) sensitivity than with wild type, while maintaining the diminished ATPase activation at pCa4.5 observed with 100% mutant. In contrast, R92Q troponin gave reduced inhibition at pCa8.5 but greater activation than wild type at pCa4.5; Ca(2+) sensitivity was increased but there was no change in cooperativity. In vitro motility assay of reconstituted thin filaments confirmed the ATPase results and moreover indicated that the predominant effect of the DeltaLys-210 mutation was a reduced sliding speed. The functional consequences of this DCM mutation are qualitatively different from the R92Q or any other studied HCM troponin T mutation, suggesting that DCM and HCM may be triggered by distinct primary stimuli.  相似文献   

7.
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.  相似文献   

8.
In order to determine the functional consequences of the Arg145Gly mutation in troponin I found in familial hypertrophic cardiomyopathy, human cardiac troponin I and its mutant were expressed in Escherichia coli and purified, and then their effects on the ATPase activity of porcine cardiac myofibrillar preparations from which both troponins C and I had been depleted were examined. Both the wild-type and mutant troponin Is suppressed the ATPase activity of the troponin C.I-depleted myofibrils, but the maximum inhibition caused by mutant troponin I was weaker than that by wild-type troponin I. In the Ca(2)(+)-activation profile of the myofibrillar ATPase activity after reconstitution with both troponins I and C, the Ca(2)(+)-sensitivity with mutant troponin I was higher than that with wild-type troponin I, whereas the maximum level of the ATPase activity with mutant troponin I was lower than that with wild-type troponin I. These findings strongly suggest that the Arg145Gly mutation in human cardiac troponin I modulates the Ca(2)(+)-regulation of contraction by impairing the interaction of troponin I with both actin-tropomyosin and troponin C.  相似文献   

9.
We recently reported that mice deficient in the programmed cell death-1 (PD-1) immunoinhibitory coreceptor develop autoimmune dilated cardiomyopathy (DCM), with production of high-titer autoantibodies against a heart-specific, 30-kDa protein. In this study, we purified the 30-kDa protein from heart extract and identified it as cardiac troponin I (cTnI), encoded by a gene in which mutations can cause familial hypertrophic cardiomyopathy (HCM). Administration of monoclonal antibodies to cTnI induced dilatation and dysfunction of hearts in wild-type mice. Monoclonal antibodies to cTnI stained the surface of cardiomyocytes and augmented the voltage-dependent L-type Ca2+ current of normal cardiomyocytes. These findings suggest that antibodies to cTnI induce heart dysfunction and dilatation by chronic stimulation of Ca2+ influx in cardiomyocytes.  相似文献   

10.
In previous work, we (El-Saleh, S., Theiret, R., Johnson, P., and Potter, J. D. (1984) J. Biol. Chem. 259, 11014-11021) presented evidence that Ca2+ activation of skeletal myofilaments depends on a specific actin domain. We showed that rabbit skeletal thin filaments reconstituted with actin modified at Lys-237 activate heavy meromyosin X Mg2+-ATPase activity independently of the Ca2+ ion concentration. The modification, which apparently blocks the inhibitory effects of troponin-tropomyosin (Tn X Tm), on acto-heavy meromyosin X Mg2+-ATPase activity, consisted of conversion of Lys-237 to an enamine by reaction of purified actin with 2,4-pentanedione (PD). In experiments reported here, we have treated myofibrils with PD with the idea of altering actin in its native state within the myofilament lattice. Preparations of native and Tn X Tm free ("desensitized") myofibrils were incubated with PD (100 mol/mol of actin lysine) under rigorous conditions (10 mM 4-morpholinepropanesulfonic acid, pH 7.0, 2.0 nM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 0.4 mM dithiothreitol, and 0.15 mM NaN3). Actin isolated from PD X myofibrils contained 0.5 mol of enamine/mol. In the presence of Ca2+, the Mg2+-ATPase activity of PD-treated myofibrils was 110-120% of the maximum Ca2+-stimulated Mg2+-ATPase activity of untreated control myofibrils. In low free Ca2+ (pCa greater than 8), the Mg2+-ATPase activity of the PD-treated myofibrils was not suppressed and remained at 100-106% of the maximum activity of the control myofibrils. Ca2+ sensitivity of the PD-treated myofibrils was restored following treatment with hydroxylamine, which hydrolyzes enamine's products. Preparations of desensitized myofibrils reconstituted with PD-modified or unmodified Tn X Tm demonstrated the same Ca2+-sensitive ATPase activities. On the other hand, preparations reconstituted with unmodified or PD-modified Tn X Tm and PD-modified desensitized myofibrils were insensitive to Ca2+ ion concentration. The Mg2+-ATPase activity of preparations of myosin treated with PD was not activated by modified or unmodified actin. Our results indicate that is is possible to produce an active state(s) of the myofibrils in the absence and presence of Ca2+ by specific alteration of the actin X Tm interaction following modification of myofibrillar actin most likely at Lys-237.  相似文献   

11.
We have previously shown that mutations in troponin T (TnT), which is associated with familial hypertrophic cardiomyopathy (HCM), cause an increase in the Ca(2+) sensitivity and a potentiation of cardiac muscle contraction. To gain further insight into the patho-physiological role of these mutations, four mutations (Arg92Gln, Phe110Ile, Glu244Asp, Arg278Cys) were introduced into recombinant human cardiac TnT, and the mutants were exchanged into isolated porcine cardiac myofibrils. The effects of mutations were tested on maximal ATPase activity, the inhibitory function of troponin I (TnI) in the absence of troponin C (TnC), and the neutralizing function of TnC. Arg92Gln, Phe110Ile, and Glu244Asp markedly impaired the inhibitory function of TnI. Arg278Cys also impaired the inhibitory function of TnI, but the effect was much smaller. Phe110Ile and Glu244Asp markedly enhanced the neutralizing function of TnC and potentiated the maximum ATPase activity. Arg92Gln and Arg278Cys only slightly enhanced the neutralizing function of TnC, and they conferred no potentiation on the maximum ATPase activity. These results indicate that mutations in TnT impair multiple processes of Ca(2+) regulation by troponin, and there are marked differences in the degree of impairment from mutation to mutation.  相似文献   

12.
S Ly  SS Lehrer 《Biochemistry》2012,51(32):6413-6420
Cardiac α-tropomyosin (Tm) single-site mutations D175N and E180G cause familial hypertrophic cardiomyopathy (FHC). Previous studies have shown that these mutations increase both Ca(2+) sensitivity and residual contractile activity at low Ca(2+) concentrations, which causes incomplete relaxation during diastole resulting in hypertrophy and sarcomeric disarray. However, the molecular basis for the cause and the difference in the severity of the manifested phenotypes of disease are not known. In this work we have (1) used ATPase studies using reconstituted thin filaments in solution to show that these FHC mutants result in an increase in Ca(2+) sensitivity and an increased residual level of ATPase, (2) shown that both FHC mutants increase the rate of cleavage at R133, ~45 residues N-terminal to the mutations, when free and bound to actin, (3) shown that for Tm-E180G, the increase in the rate of cleavage is greater than that for D175N, and (4) shown that for E180G, cleavage also occurs at a new site 53 residues C-terminal to E180G, in parallel with cleavage at R133. The long-range decreases in dynamic stability due to these two single-site mutations suggest increases in flexibility that may weaken the ability of Tm to inhibit activity at low Ca(2+) concentrations for D175N and to a greater degree for E180G, which may contribute to differences in the severity of FHC.  相似文献   

13.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.  相似文献   

14.
Point mutations in cardiac myosin, the heart's molecular motor, produce distinct clinical phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Do mutations alter myosin's molecular mechanics in a manner that is predictive of the clinical outcome? We have directly characterized the maximal force-generating capacity (F(max)) of two HCM (R403Q, R453C) and two DCM (S532P, F764L) mutant myosins isolated from homozygous mouse models using a novel load-clamped laser trap assay. F(max) was 50% (R403Q) and 80% (R453C) greater for the HCM mutants compared with the wild type, whereas F(max) was severely depressed for one of the DCM mutants (65% S532P). Although F(max) was normal for the F764L DCM mutant, its actin-activated ATPase activity and actin filament velocity (V(actin)) in a motility assay were significantly reduced (Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Proc Natl Acad Sci USA 103: 14525-14530, 2006.). These F(max) data combined with previous V(actin) measurements suggest that HCM and DCM result from alterations to one or more of myosin's fundamental mechanical properties, with HCM-causing mutations leading to enhanced but DCM-causing mutations leading to depressed function. These mutation-specific changes in mechanical properties must initiate distinct signaling cascades that ultimately lead to the disparate phenotypic responses observed in HCM and DCM.  相似文献   

15.
Although dilated cardiomyopathy (DCM) is known to result in cardiac contractile dysfunction, the underlying mechanisms are unclear. The sarcoplasmic reticulum (SR) is the main regulator of intracellular Ca2+ required for cardiac contraction and relaxation. We therefore hypothesized that abnormalities in both SR function and regulation will contribute to cardiac contractile dysfunction of the J2N-k cardiomyopathic hamster, an appropriate model of DCM. Echocardiographic assessment indicated contractile dysfunction, because the ejection fraction, fractional shortening, cardiac output, and heart rate were all significantly reduced in J2N-k hamsters compared with controls. Depressed cardiac function was associated with decreased cardiac SR Ca2+ uptake in the cardiomyopathic hamsters. Reduced SR Ca2+ uptake could be further linked to a decrease in the expression of the SR Ca2+-ATPase and cAMP-dependent protein kinase (PKA)-mediated phospholamban (PLB) phosphorylation at serine-16. Depressed PLB phosphorylation was paralleled with a reduction in the activity of SR-associated PKA, as well as an elevation in protein phosphatase activity in J2N-k hamster. The results of this study suggest that an alteration in SR function and its regulation contribute to cardiac contractile dysfunction in the J2N-k cardiomyopathic hamster. sarcoplasmic reticulum; cardiomyopathy; cAMP-dependent protein kinase; Ca2+/calmodulin-dependent protein kinase; sarco(endo)plasmic reticulum ATPase; phospholamban  相似文献   

16.
Troponin C was removed almost completely from the porcine cardiac myofibrils by the same extraction procedure using CDTA as that previously reported for the rabbit skeletal myofibrils (Morimoto, S. & Ohtsuki, I. (1987) J. Biochem. 101, 291-301), and the effects of substitution of troponin C in cardiac myofibrils with rabbit skeletal troponin C or bovine brain calmodulin were examined. While the ATPase activity of intact cardiac myofibrils or cardiac troponin C-reconstituted cardiac myofibrils was activated at only a little higher concentration of Sr2+ than Ca2+, the skeletal troponin C-substituted cardiac myofibrils, as well as intact rabbit skeletal myofibrils, required more than 10 times higher concentration of Sr2+ than Ca2+ for activation of the myofibrillar ATPase activity. However, the concentrations of Ca2+ and Sr2+ required for the activation of the ATPase activity of the skeletal troponin C-substituted cardiac myofibrils were both about 5 times higher than those of intact skeletal myofibrils. The skeletal troponin C-substituted cardiac myofibrils, as well as intact skeletal myofibrils, also showed higher cooperativity in the Ca2+-activation of the ATPase activity than intact or cardiac troponin C-reconstituted cardiac myofibrils. The ATPase activity of calmodulin-substituted cardiac myofibrils was activated at a several times lower concentration of Ca2+ or Sr2+ than that of calmodulin-substituted skeletal myofibrils, while the ratios of the concentration of Sr2+ to Ca2+ required for activation were almost the same in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The troponin complex was discovered over thirty years ago and since then much insight has been gained into how this complex senses fluctuating levels of Ca2+ and transmits this signal to the myofilament. Advances in genetics methods have allowed identification of mutations that lead to the phenotypically distinct cardiomyopathies: hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM) and dilated cardiomyopathy (DCM). This review serves to highlight key in vivo studies of mutation effects that have followed many years of functional studies and discusses how these mutations alter energetics and promote the characteristic remodeling associated with cardiomyopathic diseases. Studies have been performed that examine alterations in signaling and genomic methods have been employed to isolate upregulated proteins, however these processes are complex as there are multiple roads to hypertrophy or dilation associated with genetic cardiomyopathies. This review suggests future directions to explore in the troponin field that would heighten our understanding of the complex regulation of cardiac muscle contraction.  相似文献   

18.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

19.
To study the effect of troponin (Tn) T mutations that cause familial hypertrophic cardiomyopathy (FHC) on cardiac muscle contraction, wild-type, and the following recombinant human cardiac TnT mutants were cloned and expressed: I79N, R92Q, F110I, E163K, R278C, and intron 16(G(1) --> A) (In16). These TnT FHC mutants were reconstituted into skinned cardiac muscle preparations and characterized for their effect on maximal steady state force activation, inhibition, and the Ca(2+) sensitivity of force development. Troponin complexes containing these mutants were tested for their ability to regulate actin-tropomyosin(Tm)-activated myosin-ATPase activity. TnT(R278C) and TnT(F110I) reconstituted preparations demonstrated dramatically increased Ca(2+) sensitivity of force development, while those with TnT(R92Q) and TnT(I79N) showed a moderate increase. The deletion mutant, TnT(In16), significantly decreased both the activation and the inhibition of force, and substantially decreased the activation and the inhibition of actin-Tm-activated myosin-ATPase activity. ATPase activation was also impaired by TnT(F110I), while its inhibition was reduced by TnT(R278C). The TnT(E163K) mutation had the smallest effect on the Ca(2+) sensitivity of force; however, it produced an elevated activation of the ATPase activity in reconstituted thin filaments. These observed changes in the Ca(2+) regulation of force development caused by these mutations would likely cause altered contractility and contribute to the development of FHC.  相似文献   

20.
The major goal of this study was to elucidate how troponin T (TnT) dilated cardiomyopathy (DCM) mutations in fetal TnT and fetal troponin affect the functional properties of the fetal heart that lead to infantile cardiomyopathy. The DCM mutations R141W and DeltaK210 were created in the TnT1 isoform, the primary isoform of cardiac TnT in the embryonic heart. In addition to a different TnT isoform, a different troponin I (TnI) isoform, slow skeletal TnI (ssTnI), is the dominant isoform in the embryonic heart. In skinned fiber studies, TnT1-wild-type (WT)-treated fibers reconstituted with cardiac TnI.troponin C (TnC) or ssTnI.TnC significantly increased Ca(2+) sensitivity of force development when compared with TnT3-WT-treated fibers at both pH 7.0 and pH 6.5. Porcine cardiac fibers treated with TnT1 that contained the DCM mutations (R141W and DeltaK210), when reconstituted with either cardiac TnI.TnC or ssTnI.TnC, significantly decreased Ca(2+) sensitivity of force development compared with TnT1-WT at both pH values. The R141W mutation, which showed no significant change in the Ca(2+) sensitivity of force development in the TnT3 isoform, caused a significant decrease in the TnT1 isoform. The DeltaK210 mutation caused a greater decrease in Ca(2+) sensitivity and maximal isometric force development compared with the R141W mutation in both the fetal and adult TnT isoforms. When complexed with cardiac TnI.TnC or ssTnI.TnC, both TnT1 DCM mutations strongly decreased maximal actomyosin ATPase activity as compared with TnT1-WT. Our results suggest that a decrease in maximal actomyosin ATPase activity in conjunction with decreased Ca(2+) sensitivity of force development may cause a severe DCM phenotype in infants with the mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号