首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.  相似文献   

2.
3.
TNF-stimulated gene 6 (TSG-6) encodes a 35 kDa inducible secreted glycoprotein important in inflammation and female fertility. Previous studies have shown that TSG-6 has anti-inflammatory activity in models of acute and chronic inflammation. In the present study, we show that treatment of the RAW 264.7 murine macrophage cell line with TSG-6 protein up-regulates the expression of inducible cyclooxygenase-2 (COX-2), a key enzyme in inflammation and immune responses. This action of TSG-6 protein was abolished by heat denaturation, trypsin digestion, or anti-TSG-6 antibodies. TSG-6 treatment also resulted in a rapid increase in COX-2 mRNA levels, suggesting that TSG-6 up-regulates COX-2 gene expression. Up-regulation of COX-2 was accompanied by an increase in the production of prostaglandins, especially PGD2. As the PGD2 metabolite, 15-deoxy-Delta12,14-PGJ2, can act as a negative regulator of inflammation, these TSG-6 actions may explain, at least in part, the anti-inflammatory effect of TSG-6 observed in the intact organism.  相似文献   

4.
 We have elucidated the direct effects of PSK (a protein-bound polysaccharide) and OK-432 (a streptococcal preparation), both immunomodulating drugs, on the gene expression for an inducible nitric oxide synthase and on the production of nitric oxide (NO) in the RAW264.7 murine macrophage cell line. As determined by northern blot analysis, both immunomodulating drugs were potent inducers of gene expression for inducible NO synthase when cells were costimulated with interferon-γ (IFNγ). Expression of mRNA for the enzyme occurred in a dose-dependent manner after 3 h, when 10 – 50 μg/ml PSK or 0.001 – 1 KE/ml OK-432 was used. Furthermore, NO was also produced in response to these drugs, as detected by the Griess reagent reaction. The enhancement of NO synthesis was thought to be mediated, in part, through tumor necrosis factor α (TNFα) induction by these agents, since a neutralizing antibody to TNFα significantly suppressed NO production in RAW264.7 cells stimulated with PSK or OK432 in combination with IFNγ. We speculate that NO production may play a role in tumoricidal and microbicidal activities of PSK or OK-432 in vivo. Received: 9 August 1995 / Accepted: 1 April 1996  相似文献   

5.
Prostaglandin E(2) plays a role in cytokine production presumably by altering intracellular levels of cAMP. In this paper, we report on the differential expression of cytokine genes in murine macrophages in response to stimulation with activators of cAMP. Macrophages were cultured with or without cAMP activators in the presence or absence of LPS. Prior to treatment, macrophages do not express interleukin-1beta, but do express low levels of tumour necrosis factor alpha and platelet-derived growth factor B chain mRNAs. After culture with cAMP-inducers, including PGE(2), dibutyryl cAMP and forskolin, PDGF B chain mRNA is induced. Forskolin, for example, induced expression PDGF B chain mRNA to a level ranging from 25% to 200% of the level induced by LPS in 6 h. In contrast, cAMP-inducers enhance the expression of IL-1beta and TNF-alpha mRNAs, but only in the presence of LPS. The combination of forskolin and LPS does not appear to act synergistically on PDGF B chain mRNA levels, suggesting that LPS-stimulated effects are not mediated through a cAMP-dependent pathway. Furthermore, macrophages differentially express cytokine genes in response to treatment with inducers of intracellular cAMP.  相似文献   

6.
For the present study, which was performed to find a reliable method suitable for determination of the cell kinetic parameters of a continuous cell line, use was made of the macrophage cell line J774.1. The doubling time of the cell population was approximately 27 h. The continuous labeling curve showed that all the cells divide and almost no quiescent cells occur. The cell-cycle time as determined from the curve of the labeled cells in mitosis, the course of the stathmokinetic index, and time-lapse videorecordings, was about 19 h. The discrepancy between the population doubling time and the cell-cycle time must be due to death and disintegration of cells during culture in vitro. The results indicate that the doubling time of a cell population is not a reliable parameter to determine the kinetics of a population of continuously proliferating cells and that determination of the course of the stathmokinetic index offers a rapid and simple method to establish the cell-cycle time reliably.  相似文献   

7.
Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of azathioprine.  相似文献   

8.
We have investigated the effect of bismuth by autometallography, cell viability, TUNEL assay and microarray analysis of a macrophage cell line. The cells accumulate bismuth in their lysosomes in a time- and dose-dependent manner. Cell viability assays show a significant decrease in the number of viable cells related to both bismuth concentrations and exposure time. TUNEL assays after 12 h and 24 h at a bismuth-citrate concentration of 50 M revealed the presence of 30% and 70% TUNEL-positive cells, respectively, compared with 8% in the controls. We have analysed gene expression profiles for cells exposed to 50 M bismuth-citrate and for untreated controls at 12 h and 24 h by microarray analysis, which confirmed that bismuth is a powerful metallothionein inducer. A number of glycolytic enzymes are induced by bismuth, suggesting that bismuth is able to induce hypoxia-like stress. BCL2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) has been suggested as a regulator of hypoxia-induced cell death independent of caspase-3 activation and cytochrome c release. Bnip3 is up-regulated indicating the involvement of Bnip3 as a possible mechanism for bismuth-induced cell death. Differences have been noticed in cell viability and in the modification of the mRNA expression levels at 12 and 24 h. Only 13 genes are modified at both these times, suggesting a time-dependent molecular cascade in which bismuth-exposed cells enter a dormant stage with mRNA down-regulation being followed by cell death of susceptible cells. This study was supported by the Aarhus University Research Foundation, Aase og Ejnar Danielsens Fond and Direktør Jacob Madsen og Hustrus Fond.  相似文献   

9.
10.
Production of prostaglandin D2 by murine macrophage cell lines   总被引:2,自引:0,他引:2  
Several tumor-derived murine macrophage cell lines were evaluated in vitro as cloned prototypes of tissue macrophages for their ability to metabolize arachidonic acid. Unexpectedly, two cell lines, J774A.1 and WR19M.1, rapidly converted exogenous 14C-arachidonic acid (AA) to a single major prostaglandin metabolite. The compound, PGD2, was positively identified by TLC, HPLC, and GC-MS. The enzymatic formation of the PGD2 was shown by inhibition of its formation by indomethacin and reduced formation of 14C-PGD2 from 14C-PGH2 in boiled cells. When J774A.1 cells were prelabeled with 3H-AA, cultured for 24 hours, and stimulated with lipopolysaccharide (LPS), PGD2 was again the predominant product. No other tumor derived cell lines, including several other murine macrophage lines, produced significant amounts of PGD2. Elicited and activated murine peritoneal macrophages produced only small amounts of PGD2, but resident peritoneal macrophages produced modest amounts of PGD2. Exaggerated formation of PGD2 by J774A.1 and WR19M.1 cells may be a consequence of neoplastic transformation or the clonal expansion of a minor subpopulation of normal tissue macrophages.  相似文献   

11.
Eleven strains of lactobacilli were tested for their ability to induce the murine macrophage-like cell line J774.1 to secrete cytokines. Some of the bacteria tested induce the production of interleukin(IL) 6, IL-12, and tumor necrosis factor a (TNF-alpha) by J774.1 cells. Seven strains also induced the production of IL-10. However, no IL-1beta was produced. Lactobacillus acidophilus TMC 0356 significantly induced the production of more IL-6, IL-10, IL-12, and TNF-alpha than the other bacteria tested (p < 0.0001; ANOVA). These results suggest that lactobacilli can activate macrophages to secrete both inflammatory and anti-inflammatory cytokines. Selected strains might be used to bring about pro or antiinflammatory immune reactions.  相似文献   

12.
13.
The cell cycle of the P388D 1 murine macrophage line was delineated and suspensions of exponentially growing cells were separated by centrifugal elutriation into subpopulations enriched in the various phases of the cycle. Analysis of both growth and labelled mitoses curves disclosed that the doubling and cell-cycle times were essentially identical (18.4 and 18.3 h), indicating that all cells were in cycle. In addition, G1 + 1/2M was 4.3 h, whereas S phase and G2 + 1/2M lasted about 12 and 1.5 h. The most homogeneous subpopulations of phase-enriched cells obtained by elutriation were cells in G1 and S, where purities (estimated by both labelling indices and analyses of DNA histograms obtained by flow cytometry) exceeded 80%. Isolation of G2 + M-phase cells was not as efficient, although the purity of these subpopulations was consistently greater than of 50%, an approx. 10-fold enrichment over unseparated suspensions of cells. Comparison of IgG2a-Fc-receptor-mediated phagocytic activities among the phase-enriched subpopulations showed that cells in G2 had appreciably enhanced activity.  相似文献   

14.
Padma 28 is a mixture of herbs used in traditional Tibetan medicine with anti-inflammatory activities. We investigated the effects of Padma 28 on nitric oxide (NO) production by the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated mouse macrophages (RAW 264.7). Padma 28 (0-900 microg/mL) induced a concentration dependent inhibition of inducible nitric oxide synthesis. iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of Padma 28. Padma 28 decreased iNOS mRNA levels as shown by RT-PCR. Aqueous extracts from costi amari radix (costus root, the dried root of Saussurea lappa) and the outer cover of myrobalani fructus (the dried fruit of Terminalia chebula), constituents of the complex herb preparation Padma 28, were found to inhibit inducible nitric oxide synthesis by decreasing iNOS protein and iNOS mRNA levels. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of Padma 28.  相似文献   

15.
The proto-oncogene c-mos was expressed during differentiation of the human monocytic cell line U937 into macrophages. To investigate a possible role of the mos oncogene, we introduced the v-mos gene under an inducible promoter, MT-I, into U937 cells. The v-mos transformed cells expressed mos mRNA at an amount proportional to the concentration of Zn2+ ions. The induction of the v-mos gene caused growth inhibition and macrophage differentiation in these cells. The differentiation of v-mos transformed monocytes into macrophages required continuous expression of the v-mos gene. The extent of expression of phenotypic characteristics of macrophages, such as phagocytosis, cell surface antigens and typical morphology, depends on the amount of mos mRNA present. We were therefore able to demonstrate that the expression of only one oncogene, mos, determines monocyte differentiation into macrophages.  相似文献   

16.
Opisthorchis viverrini infection induces inflammation in and around the bile duct, leading to cholangiocarcinoma in humans. To examine the mechanism of O. viverrini-induced inflammatory response, we assessed the expression of Toll-like receptors (TLRs) in RAW 264.7 macrophage cell line treated with an extract of O. viverrini antigen. Flow cytometry and immunocytochemistry showed that O. viverrini antigen induced the expression of TLR2 but not TLR4. Western blotting and immunocytochemistry revealed that nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were expressed in RAW 264.7 cells treated with O. viverrini antigen in a dose-dependent manner. These results suggest that O. viverrini induces inflammatory response through TLR2-mediated pathway leading to NF-kappaB-mediated expression of iNOS and COX-2.  相似文献   

17.
The effects of recombinant murine interleukin (IL)-1beta on gene expression of murine bradykinin B1 receptor (BDKRB1) in MH-S murine alveolar macrophage cell line were evaluated. BDKRB1 mRNA expression in MH-S cells was increased by IL-1beta (1, 3, and 10 ng/ml) in a time-dependent manner, peaking at 3-4 h by 100-1000 fold. IL-1beta (5 ng/ml, 24h) also induced significant binding to [3H]-des-Arg10-kallidin with a dissociation constant (Kd) of 2.95 nM and a maximal binding density (Bmax) of 670 sites/cell. Des-Arg10-kallidin (10 microM), a BDKRB1 agonist, increased intracellular calcium ion ([Ca2+]i) in IL-1beta (5 ng/ml, 24 h)-exposed cells, an increase not observed in the cells not exposed to IL-1beta. A significant increase of tumor necrosis factor (TNF)-alpha secretion occurred in the IL-1beta (5 ng/ml, 24 h)-exposed cells following addition of des-Arg10-kallidin (the IL-1beta-exposed group: 57. 8 +/- 13.7 vs. the vehicle-exposed group: 16.7 +/- 4.3 pg/ml, p < 0.05 after a 100 nM des-Arg10-kallidin for 8 h), with an optimal effect at 3-100 nM. These data suggest that IL-1beta may up-regulate BDKRB1-mediated functions of alveolar macrophages via an induction of BDKRB1 gene expression.  相似文献   

18.
19.
In order to study the role of Fos on the regulation of proliferation in the monocyte-macrophage lineage we realized a stable transfection of the murine P388D1 cell line by the murine c-fos gene under the control of the human metallothionein IIA promoter. Several clones have been selected by geneticin: they show a variable number of integrated transgene (two to ten copies). Their expression has been analyzed in the presence or absence of cadmium chloride as inducer (5 × 10−6 M). In one clone especially, the c-fos mRNA and Fos protein levels were respectively 6and 10-fold increased. The study of cell growth by tritiated thymidine incorporation indicates a negative effect of the overexpressed Fos protein in the absence of any other stimulus.  相似文献   

20.
Kim HW  Kim JH  An HS  Park KK  Kim BK  Park T 《Life sciences》2003,73(19):2477-2489
The role of myo-inositol in the regulation of taurine transport in activated murine macrophage cell line, RAW 264.7, was studied. Challenge of RAW 264.7 murine macrophages for 24 hr with phorbol ester 12-myristate 13-acetate (PMA) (10 ng/ml), a PKC activator, resulted in a 62% decrease in taurine transport activity. Among the various monosaccharides (1 mM) tested in the presence of PMA, myo-inositol was most effective in restoring the PMA-induced down-regulation of taurine transport in murine macrophages (82% increase compared to the value for cells treated with PMA Alone, p < 0.01). The protective role of myo-inositol against stress-induced down-regulation of taurine transport by macrophages was further investigated in conditions mimicking bacterial infection, inflammation, and immune-suppressed circumstances. A challenge of murine macrophages with lipopolysaccharide (LPS) (0.1 and 10 microg/ml) resulted in a 60% decrease in taurine transport activity compared to the value for untreated control cells (p < 0.01). When cells were co-treated with myo-inositol (100 nM approximately 10 mM) in the presence of LPS for 24 hrs, taurine transport activity increased in a dose-dependent manner compared to the value for cells treated with LPS only. Taurine transport activity in cells treated with LPS (10 microg/ml) plus interferon-gamma (IFN-gamma) (150 unit/ml) for 24 hrs was 13% of the value for untreated control cells (p < 0.01). Again, this inflammation-induced down-regulation of taurine transport activity was completely antagonized with co-administration of 100 nM or higher levels of myo-inositol in the culture medium. Similarly, myo-inositol effectively restored the taurine transport activity suppressed by cyclosporin A (0.5 and 50 nM) in murine macrophages (p < 0.01). From these results, myo-inositol appears to be a common accelerator of taurine transport by murine macrophages in diverse conditions of down-regulated taurine transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号