首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated and partially characterized the genetic control and pheromonal regulation of a soluble activity, produced only by mating-type a cells, that inhibits the action of the alpha mating pheromone, alpha-factor, on mating-type a cells. This activity was found to be associated with a heat-stable protein and to be secreted by MATa BAR1, mat alpha 2 BAR1, and mat alpha 1 mat alpha 2 BAR1 strains, but not by MAT alpha BAR1, MATa/MAT alpha BAR1, mat alpha 1 BAR1, or MATa barl strains, demonstrating that it is under the control of both the MAT alpha 2 and the BAR1 genes. Secretion of this activity was also found to be stimulated to as much as five times the basal level by exposure of the cells to alpha-factor. This stimulation was maximal after 6 h at a pheromone concentration of approximately 2 U/ml. An assay for this activity was developed by using a refined, quantitative assay for alpha-factor. The pheromone activity of samples added to wells in an agar plate was related to the size of the halo of growth inhibition produced in a lawn of mutant cells that are abnormally sensitive. The alpha-factor-inhibiting activity was related to a reduction of the halo size when active samples were added to the lawn. Although the assay for alpha-factor was found to be relatively insensitive to pH over a range of several units, the alpha-factor-inhibiting activity displayed a sharp pH optimum at approximately 6.5. The properties of this activity have important implications concerning the role of the BAR1 gene product in recovery of mating-type a cells from cell division arrest by alpha-factor.  相似文献   

2.
3.
The role of alpha-factor structural genes MF alpha 1 and MF alpha 2 in alpha-factor production and mating has been investigated by the construction of mf alpha 1 and mf alpha 2 mutations that totally eliminate gene function. An mf alpha 1 mutant in which the entire coding region is deleted shows a considerable decrease in alpha-factor production and a 75% decrease in mating. Mutations in mf alpha 2 have little or no effect on alpha-factor production or mating. The mf alpha 1 mf alpha 2 double mutants are completely defective in mating and alpha-factor production. These results indicate that at least one alpha-factor structural gene product is required for mating in MAT alpha cells, that MF alpha 1 is responsible for the majority of alpha-factor production, and that MF alpha 1 and MF alpha 2 are the only active alpha-factor genes.  相似文献   

4.
A gene fusion consisting of 960 base pairs of 5'-flanking region of the yeast MF alpha 1 gene, 257 base pairs coding for alpha-factor prepro sequence, and a modified human IFN-alpha 1 gene was constructed. MAT alpha cells containing the chimeric gene synthesized and secreted active IFN-alpha 1 into the growth medium. The secreted interferon molecules contained the last 4 amino acids of alpha-factor prepro sequence and the amino acids encoded by the DNA modifications introduced at the beginning of IFN-alpha 1 gene. DNA sequences coding for these amino acids were removed by oligonucleotide-directed in vitro mutagenesis. Yeast cells transformed with expression plasmids containing the altered junction synthesized and secreted human IFN-alpha 1 with the natural NH2-terminus.  相似文献   

5.
The role of RAP1 in the regulation of the MAT alpha locus.   总被引:20,自引:6,他引:14       下载免费PDF全文
  相似文献   

6.
7.
MAT alpha haploids with mutations in the STE13 or KEX2 gene, and MATa haploids with mutations in the STE6 or STE14 gene, do not mate with wild-type cells of the opposite mating type. We found that such mutants were able to mate with partners that carry mutations (sst1 and sst2) that cause cells to be supersensitive to yeast mating pheromone action. Mating ability of MAT alpha ste13 and MAT alpha kex2 mutants could also be restored by adding normal MAT alpha cells to mating mixtures or by adding just the appropriate purified pheromone (alpha-factor). Therefore, the mating deficiencies caused by the ste13 and kex2 lesions, and by inference, the ste6 and ste14 mutations, appear to result only from secretion of an insufficient amount of pheromone or a nonfunctional pheromone.  相似文献   

8.
9.
10.
S Fields  I Herskowitz 《Cell》1985,42(3):923-930
Yeast alpha and a cells transcribe distinct sets of genes involved in mating behavior, alpha-specific genes and a-specific genes, respectively. The alpha 1 product of the alpha mating type locus (MAT alpha) has been the only known activator of either set of genes; it is required for synthesis of RNA from the alpha-specific genes, one of which is the major alpha-factor gene. By screening for mutants that are no longer able to express this gene, we have identified the STE12 gene product as another positive regulator of the alpha-factor gene. alpha ste12 cells are also defective in RNA production from the other known alpha-specific genes. Moreover, a ste12 cells fail to produce wild-type levels of RNA from the a-specific genes. The STE12 gene product is therefore an activator of two sets of genes involved in yeast cell type specialization.  相似文献   

11.
12.
Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone.  相似文献   

13.
14.
Two genes, MF alpha 1 and MF alpha 2, coding for the alpha-factor in yeast Saccharomyces cerevisiae were identified by in situ colony hybridization of synthetic probes to a yeast genomic library. The probes were designed on the basis of the known amino acid sequence of the tridecapeptide alpha-pheromone. The nucleotide sequence revealed that the two genes, though similar in their overall structure, differ from each other in several striking ways. MF alpha 1 gene contains 4 copies of the coding sequence for the alpha-factor, which are separated by 24 nucleotides encoding the octapeptide Lys-Arg-Glu-Ala-Glu(or Asp)-Ala-Glu-Ala. The first alpha-factor coding block is preceded by a sequence for the hexapeptide Lys-Arg-Glu-Ala and 83 additional amino acids. MF alpha 2 gene contains coding sequences for two copies of the alpha-factor that differ from each other and from alpha-factor encoded by MF alpha 1 gene by a Gln leads to Asn and a Lys leads to Arg substitution. The first copy of the alpha-factor is preceded by a sequence coding for 87 amino acids which ends with Lys-Arg-Glu-Ala-Val-Ala-Asp-Ala. The coding blocks of the two copies of the pheromone are separated by the sequence for Lys-Arg-Glu-Ala-Asn-Ala-Asp-Ala. Thus, the alpha-factor can be derived from 2 different precursor proteins of 165 and 120 amino acids containing, respectively, 4 and 2 copies of the pheromone.  相似文献   

15.
A mutation has been identified that suppresses the mating and sporulation defects of all mutations in the mating-type loci of S. cerevisiae. This suppressor, sir1-1, restores mating ability to mat alpha 1 and mat alpha 2 mutants and restores sporulation ability to mat alpha 2 and mata1 mutants. MATa sir1-1 strains exhibit a polar budding pattern and have reduced sensitivity to alpha-factor, both properties of a/alpha diploids. Furthermore, sir1-1 allows MATa/MATa, mat alpha 1/mat alpha/, and MAT alpha/MAT alpha strains to sporulate efficiently. All actions of sir1-1 are recessive to SIR1. The ability of sir1-1 to supply all functions necessary for mating and sporulation and its effects in a cells are explained by proposing that sir1-1 allows expression of mating type loci which are ordinarily not expressed. The ability of sir1-1 to suppress the mat alpha 1-5 mutation is dependent on the HMa gene, previously identified as required for switching of mating types from a to alpha. Thus, as predicted by the cassette model, HMa is functionally equivalent to MAT alpha since it supplies functions of MAT alpha. We propose that sir1-1 is defective in a function. Sir ("Silent-information regulator"), whose role may be to regulate expression of HMa and HM alpha.  相似文献   

16.
17.
The STE2 gene of Saccharomyces cerevisiae encodes a 431-residue protein containing seven hydrophobic segments that is thought to be an essential component of the cell-surface receptor for alpha-factor in MATa haploids. Methods were devised to prepare membrane fractions from MATa cells that retained high levels of alpha-factor binding activity, consistent with the view that the alpha-factor receptor resides in the plasma membrane. To demonstrate that the membrane constituent responsible for alpha-factor binding was the STE2 polypeptide, specific antibodies were generated and used to identify STE2-related polypeptides by radiolabeling, immunoprecipitation, and polyacrylamide gel electrophoresis. Under conditions of complete solubilization, the major form of the STE2 gene product detected was a glycoprotein with an apparent molecular weight of 49,000. Affinity labeling of yeast membrane preparations by chemical cross-linking to 35S-alpha-factor indicated that a molecule of 49,000 molecular weight was the major alpha-factor-binding species. This alpha-factor-binding species was shown to be the product of the STE2 gene in three ways. First, MATa haploids carrying the STE2 gene on a multicopy plasmid overproduced alpha-factor binding activity about 15-fold. Second, MATa cells completely lacking a STE2 gene showed only nonspecific binding of alpha-factor (equivalent to the level displayed by MAT alpha haploids) and possessed no species that could be cross-linked to 35S-alpha-factor. Third, MATa cells expressing a truncated but functional STE2 gene (in which the COOH-terminal 135-hydrophilic residues were deleted) produced a protein detected by cross-linking to 35S-alpha-factor of apparent molecular weight 33,000, close to the size expected for the predicted abbreviated STE2 polypeptide. These findings demonstrate unequivocally that the STE2 gene product is the membrane component responsible for the ligand recognition function of the yeast alpha-factor receptor.  相似文献   

18.
Mutations in the SSN6 gene suppress the invertase derepression defect caused by a lesion in the SNF1 protein kinase gene. We cloned the SSN6 gene of Saccharomyces cerevisiae and identified its 3.3-kilobase poly(A)-containing RNA. Disruption of the gene caused phenotypes similar to, but more severe than, those caused by missense mutations: high-level constitutivity for invertase, clumpiness, temperature-sensitive growth, alpha-specific mating defects, and failure to homozygous diploids to sporulate. In contrast, the presence of multiple copies of SSN6 interfered with derepression of invertase. An ssn6 mutation was also shown to cause glucose-insensitive expression of a GAL10-lacZ fusion and maltase. The mating defects of MAT alpha ssn6 strains were associated with production of two a-specific products, a-factor and barrier, and reduced levels of alpha-factor; no deficiency of MAT alpha 2 RNA was detected. We showed that ssn6 partially restored invertase expression in a cyr1-2 mutant, although ssn6 was clearly not epistatic to cyr1-2. We also determined the nucleotide sequence of SSN6, which is predicted to encode a 107-kilodalton protein with stretches of polyglutamine and poly(glutamine-alanine). Possible functions of the SSN6 product are discussed.  相似文献   

19.
20.
J Kurjan  I Herskowitz 《Cell》1982,30(3):933-943
We have cloned and sequenced a gene (MF alpha) coding for alpha-factor, a tridecapeptide mating factor secreted by yeast alpha cells. A plasmid carrying the MF alpha gene was identified by screening for production of alpha-factor by mat alpha 2 mutants, which fail to secrete alpha-factor because of simultaneous synthesis and degradation of the factor. The cloned segment codes for four mature alpha-factor within a putative precursor of 165 amino acids. The putative precursor begins as a signal sequence for secretion. The next segment, of approximately 60 amino acids, contains three potential glycosylation sites. The carboxy-terminal half of the precursor contains four tandem copies of mature alpha-factor, each preceded by spacer peptides of six or eight amino acids (variations of Lys-Arg-Glu-Ala-Asp-Ala-Glu-Ala), which are hypothesized to contain proteolytic processing signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号