首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Color polymorphisms in animals may result from plasticity of the developmental system in response to genetic cues in the form of allelic variation at polymorphic loci, environmental cues, or a combination of genetic and environmental cues. An increased understanding of the evolution of color polymorphisms requires better knowledge of when we should expect genetic and environmental cues respectively to influence phenotype determination. Theory posits that the developmental systems of organisms should evolve sensitivity to such cues that most accurately predict coming selective conditions. Pygmy grasshoppers (Orthoptera, Tetrigidae) vary in color pattern within and among populations and show fire melanism, i.e., an increased frequency of black and dark colored phenotypes in high density populations inhabiting fire-ravaged areas. We examined if the population density experienced by individuals during development influenced the phenotypic expression of color pattern in Tetrix subulata. Individuals were experimentally reared either in solitude, at intermediate density or under crowded conditions. We found that color patterns of experimental individuals were independent of rearing density but strongly influenced by maternal color pattern. High population density and crowding may not constitute reliable predictors of the selective regime that characterizes post-fire environments.  相似文献   

2.
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.  相似文献   

3.
Organisms can have divergent paths of development leading to alternative phenotypes, or morphs. The choice of developmental path may be set by environmental cues, the individual's genotype, or a combination of the two. Using individual-based simulation and analytical investigation, we explore the idea that from the viewpoint of a developmental switch, genetic morph determination can sometimes be regarded as adaptive developmental plasticity. We compare the possibilities for the evolution of environmental and genetic morph determination and combinations of the two in situations with spatial variation in conditions. We find that the accuracy of environmental cues in predicting coming selective conditions is important for environmental morph determination, in accordance with previous results, and that genetic morph determination is favored in a similar way by the accuracy of genetic cues, in the form of selectively maintained gene frequency differences between local populations. Restricted gene flow and strong selection acting on the phenotypic alternatives produce clearer gene frequency differences and lead to greater accuracy of genetic cues. For combined environmental and genetic morph determination, we show that the developmental machinery can evolve toward efficiently combining information in environmental and genetic cues for the purpose of predicting coming selective conditions.  相似文献   

4.
A major question for the study of phenotypic evolution is whether intra- and interspecific diversity originates directly from genetic variation, or instead, as plastic responses to environmental influences initially, followed later by genetic change. In species with discrete alternative phenotypes, evolutionary sequences can be inferred from transitions between environmental and genetic phenotype control, and from losses of phenotypic alternatives. From the available evidence, sequences appear equally probable to start with genetic polymorphism as with polyphenism, with a possible dominance of one or the other for specific trait types. We argue in this review that to evaluate the prevalence of each route, an investigation of both genetic and environmental cues for phenotype determination in several related rather than in isolated species is required.  相似文献   

5.
A population is polymorphic when its members fall into two or more categories, referred to as alternative phenotypes. There are many kinds of phenotypic polymorphisms, with specialization in reproduction, feeding, dispersal, or protection from predators. An individual's phenotype might be randomly assigned during development, genetically determined, or set by environmental cues. These three possibilities correspond to a mixed strategy of development, a genetic polymorphism, and a conditional strategy. Using the perspective of adaptive dynamics, I develop a unifying evolutionary theory of systems of determination of alternative phenotypes, focusing on the relative possibilities for random versus genetic determination. The approach is an extension of the analysis of evolutionary branching in adaptive dynamics. It compares the possibility that there will be evolutionary branching, leading to genetic polymorphism, with the possibility that a mixed strategy evolves. The comparison is based on the strength of selection for the different outcomes. An interpretation of the resulting criterion is that genetic polymorphism is favored over random determination of the phenotype if an individual's heritable genotype is an adaptively advantageous cue for development. I argue that it can be helpful to regard genetic polymorphism as a special case of phenotypic plasticity.  相似文献   

6.
The environment plays instructive roles in development and selective roles in evolution. This essay reviews several of the instructive roles whereby the organism has evolved to receive cues from the environment in order to modulate its developmental trajectory. The environmental cues can be abiotic (such as temperature or photoperiod) or biotic (such as those emanating from predators, conspecifics, or food), and the “alteration” produces a normal, not a pathological, phenotype, that is appropriate for the environment. In addition, symbiotic organisms can produce important signals during normal development. Environmental cues can be obligatory, such that the organism cannot develop without the environmental cue. These cues often permit and instruct the organism to proceed from one developmental stage to another, as when larvae receive cues to settle and undergo metamorphosis from substrates. Such obligatory cues can also be given by symbionts, as when Wolbachia bacteria prevent apoptosis in developing ovaries of some wasps. Other environmental cues can be used facultatively, allowing organisms to follow different developmental trajectories depending on whether the cue is present or not. This can be seen in the temperature‐dependent determination of sex in many reptiles and in the determination of thermotolerance in aphids by their symbiotic bacteria. Signaling from the environment is essential in development, and co‐development appears to be normative between symbionts and their hosts. Here, one sees the reciprocal induction of gene expression, just as within the embryonic organism. The ability of organisms to respond to environmental cues by producing different phenotypes may be critically important in evolution, and it may be an essential feature that can facilitate or limit evolution.  相似文献   

7.
8.
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well‐suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism – emphasizing eco evo devo, and identify current gaps in knowledge.  相似文献   

9.
Epigenomic variation may underlie phenotypic diversity that is not attributable to differences in genomic sequence. Such processes provide an organism the flexibility to respond to changing environmental cues within its lifetime, and perhaps its offspring's lifetime, and would therefore be expected to confer a selective advantage in evolutionary terms. Analysis of epigenomic variation within a population may be both a useful measure of developmental exposures and an indicator of future phenotype. A key molecular indicator of epigenomic variation in organisms is the chemical modification of DNA by methylation at specific nucleotide residues in the genome. Here we discuss how mass spectrometry can be utilised to provide quantitative analysis of DNA methylation patterns across populations. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

10.
A Forsman 《Heredity》2015,115(4):276-284
Much research has been devoted to identify the conditions under which selection favours flexible individuals or genotypes that are able to modify their growth, development and behaviour in response to environmental cues, to unravel the mechanisms of plasticity and to explore its influence on patterns of diversity among individuals, populations and species. The consequences of developmental plasticity and phenotypic flexibility for the performance and ecological success of populations and species have attracted a comparatively limited but currently growing interest. Here, I re-emphasize that an increased understanding of the roles of plasticity in these contexts requires a ‘whole organism'' (rather than ‘single trait'') approach, taking into consideration that organisms are integrated complex phenotypes. I further argue that plasticity and genetic polymorphism should be analysed and discussed within a common framework. I summarize predictions from theory on how phenotypic variation stemming from developmental plasticity and phenotypic flexibility may affect different aspects of population-level performance. I argue that it is important to distinguish between effects associated with greater interindividual phenotypic variation resulting from plasticity, and effects mediated by variation among individuals in the capacity to express plasticity and flexibility as such. Finally, I claim that rigorous testing of predictions requires methods that allow for quantifying and comparing whole organism plasticity, as well as the ability to experimentally manipulate the level of and capacity for developmental plasticity and phenotypic flexibility independent of genetic variation.  相似文献   

11.
SUMMARY The question of how phenotypic variation is maintained within populations has long been a central issue in evolutionary biology. Most of these studies focused on the maintenance of genetic variability, but the phenotype of organisms may also be influenced by environmental cues experienced during ontogeny. Color polymorphism has received particular attention in evolutionary studies as it has strong fitness consequences. However, if body coloration is influenced by the environment, any conclusions on evolutionary consequences of fitness trade-offs can be misleading. Here we present data from a laboratory experiment on the influence of substrate color on three aspects of the coloration of two ground-hopper species, Tetrix subulata and Tetrix ceperoi . We reared hatchlings either on dark or on light substrates, using a split-brood design. Although the type of pronotal pattern changed mainly in response to nymphal development, the basic color was strongly influenced by the substrate color. In both species, black and dark olive color morphs were found more frequently on the dark substrate, whereas the gray color morph dominated on the light substrate. These findings have considerable implications for our understanding of color morph evolution as they show that color polymorphism may not only be maintained by natural selection acting on discrete color morphs, but also by phenotypic plasticity, which enables organisms to adjust to the environmental conditions experienced during ontogeny. This facultative morphology is opposing to the prevailing view of color morph adaptation, which assumes a purely genetic determination and co-evolution of discrete color morphs with life history traits.  相似文献   

12.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

13.
Poecilogony is the intraspecific variation in developmental mode that has been described in some marine invertebrates. Poecilogonous species produce different larval forms (e.g., free-swimming planktotrophic larvae as well as brooded lecithotrophic or adelphophagic larvae). Poecilogony can be a controversial topic, since it is difficult to identify and characterize the phenomenon with certainty. It has been challenging to determine whether poecilogony represents developmental polymorphism with a genetic basis or developmental polyphenism reflecting plastic responses to environmental cues. Other outstanding questions include whether common mechanisms underlie the developmental variation we observe in poecilogonous species, and whether poecilogony is maintained in different taxa through similar mechanisms or selective pressures. Poecilogonous species provide a unique opportunity to elucidate the cellular, developmental, and genetic mechanisms underlying evolutionary transitions in developmental mode, as well as to help clarify the selective pressures and possible ecological circumstances that might be involved. Here, we describe an integrative approach to the study of poecilogony and its role in larval evolutionary transitions highlighted during a symposium held at the 2012 annual meeting of the Society for Integrative and Comparative Biology.  相似文献   

14.
Many polyphenisms are examples of adaptive phenotypic plasticity where a single genotype produces distinct phenotypes in response to environmental cues. Such alternative phenotypes occur as winged and wingless parthenogenetic females in the pea aphid (Acyrthosiphon pisum). However, the proportion of winged females produced in response to a given environmental cue varies between clonal genotypes. Winged and wingless phenotypes also occur in males of the sexual generation. In contrast to parthenogenetic females, wing production in males is environmentally insensitive and controlled by the sex-linked, biallelic locus, aphicarus (api). Hence, environmental or genetic cues induce development of winged and wingless phenotypes at different stages of the pea aphid life cycle. We have tested whether allelic variation at the api locus explains genetic variation in the propensity to produce winged females. We assayed clones from an F2 cross that were heterozygous or homozygous for alternative api alleles for their propensity to produce winged offspring. We found that clones with different api genotypes differed in their propensity to produce winged offspring. The results indicate genetic linkage of factors controlling the female wing polyphenism and male wing polymorphism. This finding is consistent with the hypothesis that genotype by environment interaction at the api locus explains genetic variation in the environmentally cued wing polyphenism.  相似文献   

15.
The developmental mechanisms by which the environment may alterthe phenotype during development are reviewed. Developmentalplasticity may be of two forms: developmental conversion orphenotypic modulation. In developmental conversion, organismsuse specific environmental cues to activate alternative geneticprograms controlling development. These alternative programsmay either lead to alternative morphs, or may lead to the decisionto activate a developmental arrest. In phenotypic modulation,nonspecific phenotypic variation results from environmentalinfluences on rates or degrees of expression of the developmentalprogram, but the genetic programs controlling development arenot altered. Modulation, which is not necessarily adaptive,is probably the common form of environmentally induced phenotypicvariation in higher organisms, and adaptiveness of phenotypicplasticity therefore cannot be assumed unless specific geneticmechanisms can be demonstrated. The genetic mechanisms by whichdevelopmental plasticity may evolve are reviewed, and the relationshipbetween developmental plasticity and evolutionary plasticityare examined.  相似文献   

16.
Pleiotropy and Multilocus Polymorphisms   总被引:2,自引:1,他引:1       下载免费PDF全文
A. Gimelfarb 《Genetics》1992,130(1):223-227
It is demonstrated that systems of two pleiotropically related characters controlled by additive diallelic loci can maintain under Gaussian stabilizing selection a stable polymorphism in more than two loci. It is also shown that such systems may have multiple stable polymorphic equilibria. Stabilizing selection generates negative linkage disequilibrium, as a result of which the equilibrium phenotypic variances are quite low, even though the level of allelic polymorphisms can be very high. Consequently, large amounts of additive genetic variation can be hidden in populations at equilibrium under stabilizing selection on pleiotropically related characters.  相似文献   

17.
Evolution and molecular mechanisms of adaptive developmental plasticity   总被引:1,自引:0,他引:1  
Aside from its selective role in filtering inter-individual variation during evolution by natural selection, the environment also plays an instructive role in producing variation during development. External environmental cues can influence developmental rates and/or trajectories and lead to the production of distinct phenotypes from the same genotype. This can result in a better match between adult phenotype and selective environment and thus represents a potential solution to problems posed by environmental fluctuation. The phenomenon is called adaptive developmental plasticity. The study of developmental plasticity integrates different disciplines (notably ecology and developmental biology) and analyses at all levels of biological organization, from the molecular regulation of changes in organismal development to variation in phenotypes and fitness in natural populations. Here, we focus on recent advances and examples from morphological traits in animals to provide a broad overview covering (i) the evolution of developmental plasticity, as well as its relevance to adaptive evolution, (ii) the ecological significance of alternative environmentally induced phenotypes, and the way the external environment can affect development to produce them, (iii) the molecular mechanisms underlying developmental plasticity, with emphasis on the contribution of genetic, physiological and epigenetic factors, and (iv) current challenges and trends, including the relevance of the environmental sensitivity of development to studies in ecological developmental biology, biomedicine and conservation biology.  相似文献   

18.
Development in context: the timely emergence of eco-devo   总被引:2,自引:1,他引:1  
Ecological development or 'eco-devo' examines the mechanisms of developmental regulation in real-world environments, providing an integrated approach for investigating both plastic and canalized aspects of phenotypic expression. This synthetic discipline brings a current understanding of environmentally mediated regulatory systems to studies of genetic variation, ecological function and evolutionary change. Eco-devo is emerging at a critical point in time, as researchers try to understand and predict the future of organisms in a changing world. Precise knowledge of the external and internal environmental cues, signaling pathways and genetic elements implicated in developmental outcomes will provide key insights to the immediate tolerance and potential evolutionary resilience of organisms to the altered physical and biotic conditions created by human activities.  相似文献   

19.
Phenotypic traits that convey information about individual identity or quality are important in animal social interactions, and the degree to which such traits are influenced by environmental variation can have profound effects on the reliability of these cues. Using inbred genetic lines of the decorated cricket, Gryllodes sigillatus, we manipulated diet quality to test how the cuticular hydrocarbon (CHC) profiles of males and females respond across two different nutritional rearing environments. There were significant differences between lines in the CHC profiles of females, but the effect of diet was not quite statistically significant. There was no significant genotype-by-environment interaction (GEI), suggesting that environmental effects on phenotypic variation in female CHCs are independent of genotype. There was, however, a significant effect of GEI for males, with changes in both signal quantity and content, suggesting that environmental effects on phenotypic expression of male CHCs are dependent on genotype. The differential response of male and female CHC expression to variation in the nutritional environment suggests that these chemical cues may be under sex-specific selection for signal reliability. Female CHCs show the characteristics of reliable cues of identity: high genetic variability, low condition dependence and a high degree of genetic determination. This supports earlier work showing that female CHCs are used in self-recognition to identify previous mates and facilitate polyandry. In contrast, male CHCs show the characteristics of reliable cues of quality: condition dependence and a relatively higher degree of environmental determination. This suggests that male CHCs are likely to function as cues of underlying quality during mate choice and/or male dominance interactions.  相似文献   

20.
Gene regulation,quantitative genetics and the evolution of reaction norms   总被引:12,自引:0,他引:12  
Summary The ideas of phenotypic plasticity and of reaction norm are gaining prominence as important components of theories of phenotypic evolution. Our understanding of the role of phenotypic plasticity as an adaptation of organisms to variable environments will depend on (1) the form(s) of genetic and developmental control exerted on the shape of the reaction norm and (2) the nature of the constraints on the possible evolutionary trajectories in multiple environments. In this paper we identify two categories of genetic control of plasticity: allelic sensitivity and gene regulation. These correspond generally to two classes of response by the developmental system to environmental change: phenotypic modulation, in which plastic responses are a continuous and proportional function of environmental stimuli and developmental conversion, where responses tend to be not simply proportional to the stimuli. We propose that control of plasticity by regulatory actions has distinct advantages over simple allelic sensitivity: stability of phenotypic expression, capacity for anticipatory response and relaxation of constraints due to genetic correlations. We cite examples of the extensive molecular evidence for the existence of environmentally-cued gene regulation leading to developmental conversion. The results of quantitative genetic investigations on the genetics and evolution of plasticity, as well as the limits of current approaches are discussed. We suggest that evolution of reaction norms would be affected by the ecological context (i.e. spatial versus temporal variation, hard versus soft selection, and fine versus coarse environmental grain). We conclude by discussing some empirical approaches to address fundamental questions about plasticity evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号